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Abstract

We present a novel framework for robustly understanding
the geometrical and semantic structure of a cluttered room
from a small number of images captured from different view-
points. The tasks we seek to address include: i) estimating
the 3D layout of the room – that is, the 3D configuration of
floor, walls and ceiling; ii) identifying and localizing all the
foreground objects in the room. We jointly use multiview ge-
ometry constraints and image appearance to identify the best
room layout configuration. Extensive experimental evalua-
tion demonstrates that our estimation results are more com-
plete and accurate in estimating 3D room structure and rec-
ognizing objects than alternative state-of-the-art algorithms.
In addition, we show an augmented reality mobile application
to highlight the high accuracy of our method, which may be
beneficial to many computer vision applications.

1. Introduction
In this paper we will present a new framework for under-

standing an indoor environment from multiple images. The
goal of indoor room understanding involves estimating 3D
layout (e.g. floor, walls, ceiling) of the indoor environment
as well as identifying the objects within it. Using images to
understand the layout of a cluttered room is a great challenge
in computer vision research. A room may be occupied by ob-
jects that are not necessarily observed in a training set. The
room walls may be occluded and cannot be observed directly
(Fig. 1). Solving the room layout understanding problem is
beneficial in many applications such as augmented reality.

In the past few decades, researchers proposed numerous
remarkable methods[8, 21, 7] focusing on obtaining metric
reconstructions of an unknown environment. These methods
can accurately recover the 3D geometry of an environment
given enough quantity of images. However, they cannot iden-
tify the key semantic phenomena inside the environment (Fig.
1a). Meanwhile, researchers [2, 26, 20] also looked at esti-
mating scene semantics from 3D points. Nevertheless, these
methods usually require very dense and accurate reconstruc-
tions obtained using 3D scanners or from a very large number
of images. Such requirement limits the scope of their appli-
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Figure 1: Understanding a cluttered room from a few images. (a)
Structure from motion techniques (e.g. [21]) can only understand
the geometry of the room as a sparse set of 3D points. (b) Lay-
out estimation methods (e.g. [23, 4]) may recover the wall structure
without reasoning about objects. (c) Joint geometric and semantic
reconstruction methods (e.g. [1]) can recognize a few objects (the
yellow boxes), estimate their positions in 3D, as well as estimate the
3D layout as a sparse set of elements (the red regions). (d) Our goal
is to estimate the complete 3D layout of the room (floor, walls, ceil-
ing) and identify all the foreground objects. Notice that we aim at
differentiating objects v.s. walls, rather than distinguishing different
object entities / categories.

cations. Moreover, [23, 4, 6] leverage the Manhattan world
assumption to estimate room walls from a sequence of im-
ages, but they cannot handle objects in a scene (Fig. 1b).

Recently, [1] proposed an approach to jointly estimating
the geometric and semantic properties of a scene. Using a
small set of images, [1] shows better 3D geometry estimation
and object recognition results than the geometry estimation
methods or the semantic reasoning methods that work in iso-
lation. Unfortunately, one of its shortcomings is that it can
only produce a very sparse reconstruction of a scene (Fig. 1c),
which is not desirable for the aforementioned applications.

Another noticeable series of works concentrate on parsing
the room layout from a single image [9, 10, 11, 16, 15, 18,



Figure 2: Using a single image to understand room layout may suffer
from the intrinsic ambiguity of a single image. This photo may be
interpreted in two ways: 1) the floor is painted artificially to create
the illusion; 2) the room is hollow and the people are floating. If we
are given another photo from a different view point, this ambiguity
will naturally dissolve.

19, 25, 13, 5, 3]. However, their accuracy in estimating the
3D scene layout is limited mostly due to the fact that 3D per-
ception from a single view is essentially an ill-posed problem,
and the room structure may not be uniquely inferred from a
single image. An illustrative example is shown in Fig. 2.

Understanding the room layout from multiple images is far
from being trivial. We need an effective and efficient algo-
rithm to jointly reason about the content in multiple images.
On the other hand, although we can infer certain 3D geom-
etry information, e.g. structure-from-motion (SFM) points,
to help room layout estimation, the 3D cues inferred from a
few input images are usually very sparse and noisy. Exper-
iment results proved that simply relying on the SFM points
from a small set of images (~10) will yield very unstable and
inaccurate layout estimation results. In order to address these
challenges, we propose a new room understanding framework
bearing the following contributions.

Accuracy. We can achieve higher accuracy in layout esti-
mation and object recognition tasks than pure geometry-based
methods or single-image methods. We estimate 3D room lay-
out (walls, floor, ceiling) jointly using geometric and semantic
cues, which play complementary roles in helping recover the
geometry of the scene. When a room is very cluttered, there
will usually exist a large set of characteristic feature points,
which can yield a SFM point cloud with reasonable density
(geometric cue). SFM points can help us reason about the
extent of the room and thereby tackle the adversary that wall
boundaries are occluded by the foreground objects. As the
opposite, when a room is comparatively clean, we can ex-
ploit image line segments and region segmentation results (se-
mantic cue) to obtain a good estimation of the room’s walls.
Meanwhile, by jointly using multiple images to reason about
the existence of objects, our object recognition accuracy can
be demonstrated to be significantly higher than single-image
methods.

Completeness. We seek for a complete reconstruction of
the room layout in 3D including objects. In contrast, many
aforementioned methods can only reconstruct the room layout

as a set of points [8, 21] or a sparse set of regions [1]. More-
over, different from many previous works [16, 10, 18] that
only consider box-like objects, our model can accommodate
objects with more complex shapes. We propose a surface-
based object representation (Fig. 5), which greatly expands
the types of recognizable objects compared to a box-based
representation. Notice that, our goal is to recognize objects
apart from room layouts, rather than recognizing object cate-
gories. Compared to recognizing an object as a whole (as in
[16, 10, 18]), our surface-based representation also enhances
the chance of recognizing an unknown object (an object ap-
pears in testing but not in the training set) by using parts (sur-
faces) that are shared by other objects in the training set. For
example, a wooden desk may share similar texture and legs
as a wooden chair. Hence, even if our training set does not
contain the desk category, the desk may still be successfully
recognized (as an object) provided that the training set con-
tains a chair with similar parts and texture. Notice that, we
use a generic object segmentation algorithm (Sec. 2.1) to de-
compose objects into surfaces, rather than using a pre-trained
model for each object category.

We conducted numerous experiments using a novel dataset
containing 50 various room scenes with 10 images in each
scene. Various experiments demonstrate that our frame-
work can achieve better estimation accuracy and higher re-
construction completeness than alternative state-of-the-art ap-
proaches. At last, we will show an Android application which
leverages our layout estimation method to achieve pleasant
augmented reality results.

2. Problem Definition
2.1. Inputs and Measurements

We are provided a total number of N unordered images
I1 · · · IN (Fig. 3a). In each image Ii we can detect a set of
feature points (e.g. [17]) pi, as well as a set of segmented
regions bi (Fig. 3c and 3d). In the following text we will
also refer to line segments in images. Line segments are es-
sentially the boundaries of regions. For the sake of simplicity,
we do not introduce additional symbols for line segments.

The feature points play a number of different roles in our
framework. One role is to create the 3D reconstruction of the
points in rooms and help estimate camera parameters. Since
the target scenario of our algorithm is a cluttered room, we
can assume that the input images contain a sufficient amount
of feature points to be matched across each other, and there-
fore a structure-from-motion (SFM) pipeline can be used to
estimate a set of 3D points P in the scene, as well as the cam-
era parameters C (Fig. 3b). Let C = {Ci} be the camera
parameters where Ci indicates the rotation, translation, and
intrinsics of image Ii. The extrinsics are estimated using a
SFM pipeline (e.g. [21]), while the intrinsics may be pro-
vided as input or estimated using auto-calibration [8].

The region segments are critical to our framework for eval-
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Figure 3: Multi-image room layout understanding framework.

uating the possibility of a room hypothesis (layout + objects).
Since our framework is designed to use multiple input im-
ages, the region segments should be matched across images.
We apply a multi-image segmentation algorithm (e.g. [22]),
which not only automatically matches across-image regions
covering the same objects (see colored regions in Fig. 4b),
but also simultaneously guarantees that the matched regions
are similar in shape and appearance (see region shapes in Fig.
4b). The kth region segment in image Ii is denoted as bik,
whose appearance can be described by a vector concatenating
multiple cues (e.g. cues proposed by [12]). Given the appear-
ance vector and a pre-trained region classifier, a confidence
can be calculated that bik belongs to class label l (e.g. walls,
floors, ceilings, or other objects). See Fig. 4c for examples.

(a) Two input images

(b) Region segments and matched regions (indicated by color).

(c) Response map of region classifiers. (The left image in the image pair)

Figure 4: Co-segmentation. This example shows the result of using
two images. In our experiment the co-segmentation is applied to ~10
images of the same room.

2.2. Unknown Parameters
The unknowns are the 3D layout and the configuration of

objects in the room.
The 3D layout can be described by a set of room surfaces

(walls, floors, ceilings) S = {S1 · · ·SNS
}. A surface Si is

parametrized by its centroid, orientation, and extent in 3D. In
our experiments, we follow previous works [9, 15, 18] which
hold the assumption that the room layout is a 3D box. See
orange lines in Fig. 3e and 3f.

We model 3D objects as a set of 3D planar surfaces (we
also refer to as regions). See Fig. 5 for examples. In our
framework, we do not model objects as single entities. In-
stead, we assign to each surface a single class label which is
object v.s. non-object. Non-object means that a surface be-
longs to the room layout which can be further classified into
floor, wall, or ceiling. Object means that a surface belongs
to one of the foreground objects (though we do not distin-
guish which one). Let O = {O1 · · · · · ·ONo

} represent the
collection of all objects in a room environment, where Oi is
a planar 3D surface which belongs to an object in the scene.
A surface Oi captures the location, orientation, and extent of
a component of an object in 3D. Although such modeling ap-
proximates every surface as flat, it allows to accommodate
arbitrarily complicated object configurations.

3. Model Formulation
Our goal is to estimate a room layout R = {S,O} from

measurements by minimizing a cost function E:

R = arg min
R

E(R;P,C,b) (1)

where E evaluates the likelihood of R given SFM points P,
estimated camera parameters C, and region measurements in
every image b = {bi}. In order to compute the cost of a given
hypothesis with respect to the measurements, we consider the
cost of their geometric compatibility in 3D space (EG) and
the cost of semantic interpretation in images (EM ):

E(R;P,C,b) = EG(R;P) + EM (R;C,b) (2)



(a) Objects in a scene (b) Surface Decomposition

Figure 5: Object Representation. (a) Objects in images. These two
objects cannot be effectively represented using bounding cubes as
proposed by [10, 16, 18] (b) One possible region decomposition for
the objects. In our experiments, the decomposition is the result gen-
erated from region segmentation algorithm (e.g. [22]), not from a
pre-trained model. The 3D locations and orientations of object sur-
faces are estimated using the SFM points attached to the surfaces.

Notice that, if only one image is given, we cannot evaluate
3D geometry cost, the overall cost degenerates into evaluating
semantic cost in a single image, which is related to the energy
function proposed in most single-image methods [12, 9].

3.1. Geometric Cost
A good layout estimation should be compatible with the

estimated SFM points. However, the criteria of evaluating
such compatibility should be carefully selected since SFM
points may contain many outliers and only sparsely represent
the 3D layout of a room. We use the following criteria to
calculate EG:

• The inner space enclosed by S should contain all scene
points P. Let Ω(P;S) be the function computing the
percentage of points in P not enclosed by S. The cost of
the points excluded from a room structure can be com-
puted as EIG = Ω2(P;S)/σ2

Ω.

• The 3D walls / floors/ ceilings defined by S should be
supported by points in P. Si is the ith 3d surface in S.
Let τSi ⊂ P be the indices of the 3D points whose image
projections fall into the image projection of Si excluding
the part occluded by object surfaces in O. Denote by
Λ(Si, pj) the function computing the 3D distance from
Si to 3D point pj . The cost of unsupported 3D walls can
be computed as ESG =

∑
i

∑
j∈τS

i
Λ2(Si, pj)/σ

2
S .

• Similarly, the 3D objects (i.e. a set of 3D regions)
should also be supported by points in P. Let τOi ⊂ P
be the indices of the 3D points whose image projec-
tions fall into the image projection of Oi. The cost
of unsupported 3D objects can be written as EOG =∑
i

∑
j∈τO

i
Λ2(Oi, pj)/σ

2
O.

The overall geometric cost is a summation:EG = EIG+ESG+
EOG . The variance terms σΩ, σS , σO are learned using a max-
likelihood approach.

3.2. Semantic Cost
The sophisticated content carried by images can be used to

verify the possibility of a room hypothesis. We project O and
S into each image using the estimated camera parameters C.
Denote by ski / okj the image projection of Si ∈ S /Oj ∈ O in
the kth image considering their occlusion relationships. Once
Si or Oj is projected into an image, we can transfer their la-
bels to corresponding image regions. The possible labels in-
clude left wall, front wall, right wall, ceiling, floor, objects.
Correct 3D layout will lead to labels reinforced by image evi-
dence. We use segmented regions to check the likelihood that
a projection with certain inferred label is correct. A projected
3D region (ski / okj ) may overlap with a number of image re-
gions (object region only overlaps with one). Denote by θki
the indices of the elements in bk (regions in the kth image)
which overlap with ski . The semantic cost for one projected
wall region in image Ik can be computed as:

EkM (Si) = − 1

|θki |
∑
j∈θki

c(bkj ∈ lki )

where c(·) is the label confidence function defined by a clas-
sifier learned from a training set. The semantic cost for object
regions EkM (Oi) can be easily written in a similar fashion.
Given multiple images and all the elements in S and O, the
semantic cost can be written as:

EM (R;C,b) =
∑
k

(
∑
i

EkM (Si) +
∑
j

EkM (Oj))

4. Solving the Estimation Problem
We solve the room estimation problem by identifying the

room layout S and objects O minimizing Eq. 1. Due to
the high dimensionality of the unknown parameter space, we
adopt an approach that is based on proposing hypotheses and
evaluating them using the cost function E (Eq. 2). We
first propose a set of hypotheses {Rn} (Sec. 4.1), and next
identify among these proposals the best layout configuration
which yields the minimum cost (Sec. 4.2). Our framework
can be summarized as the flowchart shown in Fig. 3.

4.1. Generating Hypotheses
Effectively proposing room hypotheses is the key to this

estimation process. The room proposal process consists of
four steps.

4.1.1 Estimating Dominant Directions
We adopt the Manhattan world assumption that the walls of
a room must be perpendicular to one of three mutually per-
pendicular directions (dominant directions). We adopt [15]
to estimate dominant directions from the line segments (e.g.
boundaries of regions or detected using methods such as [24])
in each input image. The dominant direction in the world



(a) Input images and detected line segments

......hypo. 1 hypo. 2 hypo. 3

(b) Three wall hypotheses among many proposals. (c) SFM points and hypotheses in 3D (top view)

Figure 6: Proposing wall layout candidates. (a) Detected line segments. Line segments allow to estimate the dominant direction of the room. (b)
Wall layout candidates are generated by enumerating pairs of line segments. (c) Triangulation of 2D wall layouts provides their configurations
in 3D. By comparing with the SFM points, it is easy to see only hypothesis 3 (the yellow one) is compatible with the SFM points. Notice that
most single-image methods suffer from accurately choosing the best layout among the three candidates shown in (b).

coordinate system can be calculated by averaging the domi-
nant directions in all images considering their relative camera
poses.

4.1.2 Triangulating Room Corners
In order to generate room hypotheses, we first estimate a set
of possible 3d locations of room corners. A room corner is
a 3D point where three walls intersect. A room’s layout can
be defined by its corners. In order to locate room corners in
3D space, we first identify them in each image (Fig. 6b), and
use estimated camera poses to triangulate their 3D position
(Fig. 6c). This is not a trivial task since wall corners may
not be directly observable, due to occlusion or weak corner
detector response. We leverage on line segments to infer the
existence and locations of room corners in an image (Fig. 6a).
Given the estimated dominant directions, each line segment
can be labeled as “bottom-up”, “left-right”, “back-front”, or
“random”. Two different types (except random lines) of line
segments may intersect and form a corner. In one image, by
pairing line segments and inferring their 2D intersections, we
can obtain a (large) set of image points among which a few
represent true room corners. We can obtain the 3D location of
a room corner candidates qi by triangulating a pair of image
corner candidates that satisfy epipolar constraint. Triangulat-
ing every pair of 2D corner candidates may generate a very
large set of 3D points Q = {qi} , among which only a few
are true room corners.

4.1.3 Generating Room Hypotheses
Room hypotheses are generated from the corner candidate set
Q. In our experiments, we assume a room layout is a cuboid,
hence a layout hypothesis can be uniquely proposed using a
number of corners. We randomly sample points in Q and ob-
tain the set of room layout hypotheses. In order to confine the
total number of layout hypotheses within a tractable range (at
most 300 in our experiments), we use K-means algorithm to
cluster similar room layout and only keep significantly differ-
ent room layout hypotheses as {Sl}. Please see supplemen-
tary materials for more details.

4.1.4 Generating Object Hypotheses

After a layout hypothesis Sl is generated, we next generate
its compatible object configuration Ol. In order to minimize
the overall cost, the object hypotheses are generated from two
clues: 1) 3D SFM points that are not close to the room walls
(to minimize EOG ), 2) image regions that are assigned with a
high score by object classifier (to minimize EkM ). Please see
Fig. 7 and its caption for the details regarding generating ob-
ject hypotheses. In our experiments, we find these two types
of clues complimentary. An object (e.g. a book with unique
cover) may not share similar appearance with other objects
in a training set, and therefore an appearance-based classifier
may fail to detect it. However, its triangulated 3D location
can help infer that it does not belong to rooms walls (hence it
must be an object). On the other hand, an object (e.g. a table
surface) may have simple and clean appearance which does
not carry sufficient features for SFM, but it’s simple appear-
ance pattern may be easily recognized by a classifier. A room
layout hypothesis Sl and its corresponding object hypotheses
Ol constitute a room hypothesis Rl.

4.2. Evaluating Hypotheses
Given a layout hypothesis Rl, we can evaluate its cost as

el = E(Rl;P,C,b). The final estimation of the room layout
is obtained by selecting the hypothesis with the lowest cost. In
our experiments, we exploit parallel computing technique to
efficiently evaluate all layout hypotheses. As our future work,
we will adopt faster inference algorithm such as branch-and-
bound [19] to accelerate the hypotheses generation and eval-
uation process.

5. Evaluation
We conduct experiments in a novel dataset which contains

50 different room scenes each of which include 10 images.
We would like to release this new kind of multi-image dataset
to the community for future research. Example figures and
results are shown in Fig. 9. Using this dataset, we compare
our method against other state-of-the-art methods. Since our
proposed method requires multiple images, we cannot evalu-
ate on single image datasets such as the one proposed in [9].
However, we use the labeled data in [9] to train region clas-
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x
x

x
x

x
x

x x
x

xx
x

x

x

x
xx

x
x

xx
xx

x

x
x

x
xxx

xx

x xx
x

xx
x x x

x
x

x

x
x

x

x

x x xx
xx xx

x
xx

x
x

x
x

xx
x

x
xxx x x x x

x
x

x

x
x

x
xx x x

x

x

x
x
x

x
x

x
x

x

x
x

x
x
x

x
x

x
xx

x

x

x

x

x
x

x x

x x
x x

xxx x xx xx
x
x

x
x
x

xxxxx
xxxx

x

x
x

xxx
xxxxxxxx

xxxxxx

x x

x
x

xx

x

x
x

xx
x

x
x

x
x x x x x

x x xxx
x
x

(b) SFM points and the
camera (Top view)

x x
x x

xxx x xx xx
x
x

x
x
x

xxxxx
xxxx

x

x
x

xxx
xxxxxxxx

xxxxxx

x x

x
x

xx

x

x
x

xx
x

x
x

x
x x x x x

x x xxx
x
x

x xx xxx

(d) A room layout 
hypothesis

x x
x x

xxx x xx xx
x
x

x
x
x

xxxxx
xxxx

x

x
x

xxx
xxxxxxxx

xxxxxx

x x

x
x

xx

x

x
x

xx
x

x
x

x
x x x x x

x x xxx
x
x

wall

floor

object

xx xx

x

x x
x x

(f) Point labels from 
Geometry

x
x

x
x

x
x

x x
x

xx
x

x

x

x
xx

x
x

xx
xx

x

x
x

x
xxx

xx

x xx
x

xx
x x x

x
x

x

x
x

x

x

x x xx
xx xx

x
xx

x
x

x
x

xx
x

x
xxx x x x x

x
x

x

x
x

x
x x x x

x

x

x
x
x

x
x

x
x

x

x
x

x
x
x

x
x

x
xx

x

x

x

x

x
x

x x

x
x

x
x

x
x

x x
x

xx
x

x

x

x
xx

x
x

xx
xx

x

x
x

x
xxx

xx

x xx
x

xx
x x x

x
x

x

x
x

x

x

x x xx
xx xx

x
xx

x
x

x
x

xx
x

x
xxx x x x x

x
x

x

x
x

x
x x

x x
x

x

x
x
x

x
x

x
x

x

x
x

x
x
x

x
x

x
xx

x

x

x

x

x
x

x x

x x
x x

xxx x xx xx
x
x

x
x
x

xxxxx
xxxx

x

x
x

xxx
xxxxxxxx

xxx xxx

x x

x
x

xx

x

x
x

xx
x

x
x

x
x x x x x

x

x

xxx
x
x

x

x

x x
x

x x
x x

(h) Object sufaces in 3D

(e) Projected labeled points (g) Transferring point 
labels to regions

(i) Complete region labels

O1

O2

O3

O2

O3

O1

x
x

x
x

x
x

x x
x

xx
x

x

x

x
xx

x
x

xx
xx

x

x
x

x
xxx

xx

x xx
x

xx
x x x

x
x

x

x
x

x

x

x x xx
xx xx

x
xx

x
x

x
x

xx
x

x
xxx x x x x

x
x

x

x
x

x
xx x x

x

x

x
x
x

x
x

x
x

x

x
x

x
x
x

x
x

x
xx

x

x

x

x

x
x

x x

missing label

wrong label

Figure 7: Generating object hypotheses. (a) an example image from a set of input images. (b) Top view of the SFM points and the camera (the
triangle). (c) Region segments in this image and the location of projected SFM points. (d) A given room hypothesis (Sec. 4.1.3) overlaid with
SFM points. (f) We can identify the points close to the walls and assign labels to SFM points (yellow and blue). The points that do not belong
to any walls will be labeled as non-room (green) i.e. objects. (e)(g) the SFM point labels can be transferred to regions. Notice that there are
missing (transparent) or wrong region labels, since regions may not carry sufficient SFM points and point labels may be noisy. (i) Based on the
labels initialized from SFM points, we obtain a complete region classification by minimizing EM . Notice that the missing labels are inferred
and the wrong labels are corrected by enforcing appearance consistency. (h) The region labeled as objects can be back-projected into 3D space
if they carry sufficient SFM points. In this case, we can generate an object configuration hypothesis containing O1,O2, and O3. Notice that
the top part of the cabinet does not correspond to an object surface in 3D since it does not carry SFM points. For such surfaces of objects, our
framework can infer their existence in images but not in 3D.

Feat. SFM Img. Seg. Hypo. Total
Sec. 8.2 2.5 9.3 36.8 56.6

Table 1: Average time consumption for estimating one scene from 10
images. Feat. includes sift [17] feature detection (CUDA) and fea-
ture matching(CUDA). SFM includes ransac-based essential matrix
estimation (C), and bundle adjustment (C). Img. Seg. indicates im-
age segmentation including superpixel generation (C) and classifica-
tion (multi-thread Matlab). Hypo. indicates hypotheses generation
(multi-thread Matlab) and evaluation (Matlab+C) process described
in Sec. 4.1 and Sec. 3 .

sifiers for our method and competing methods. At the end
of this section, we will discuss an Android application that
leverages our estimation results for indoor augmented reality.

5.1. Algorithm Speed
We report the time consumption of each step in our frame-

work in Tab. 1. Our unpolished implementation mixes the
usage of matlab, C, and CUDA. The implementation detail is
listed in the table caption. The experiment is conducted on a
4-core 2.8GHz CPU.

5.2. 3D Reconstruction Completeness
We show the 3D reconstruction completeness in Tab. 2.

Our model aims at estimating the 3D information of every
pixel in an image. In contrast, many alternative room recon-
struction methods can only recover the 3D information for a
set of points (e.g. [21]) or a set of regions + points (e.g. [1]).
[21, 1] both show higher completeness level in reconstructing
non-wall objects than reconstructing both objects and walls.
The reason is that [21, 1] rely on matched features (points / re-

[21] [1] Ours
Objects 1.2% 77.5% 86.0%

All 0.69% 46.0% 91.4%

Table 2: 3D reconstruction completeness. The numbers are the per-
centage of image pixels whose 3D information can be estimated.
Objects: only count the pixels belonging to non-wall objects. All:
count every pixel. Notice that our completeness is not 100%, be-
cause we cannot recover the 3D location of the object surfaces that
do not contain SFM points.

gions) to create 3D elements. Non-wall objects usually carry
more features than walls, and therefore they are more likely to
be reconstructed than walls. Notice that our method does not
suffer from this condition in that we can infer the existence of
walls even if they are not directly observable.

5.3. Layout Estimation Accuracy
In order to evaluate the accuracy for estimating room lay-

out, we adopt the criterion commonly used in other works
[9, 19]. We project the estimated room layout into each im-
age, and label every pixel into wall, ceiling, or floor). The
percentage of correctly labeled pixels is shown in Tab. 3.
Due to the code unavailability of other works, we cannot
evaluate them in our dataset. We also compare with a base-
line geometry-based approach (Plane Fitting in Tab 3), which
uses vanishing lines to estimate dominant directions and uses
RANSAC to fit a box-like room based on SFM points. This
approach is equivalent to a degenerated version of our method
which only minimizes the geometry cost term.



Home Office Other Overall
Image# 300 110 90 500

[9] 79.8 79.0 81.5 79.9
[15] 73.5 67.7 71.7 71.9

Plane Fitting 71.6 76.0 68.4 72.0
Ours 92.7 96.7 92.3 93.5

Table 3: Room layout estimation accuracy. The number is percent-
age number averaged on 500 images in our dataset.

[12] [9] No Coseg. No Geo. Full
Precision 38.8% 52.2% 38.8% 42.1% 58.1%

Recall 50.0% 55.4% 50.0% 52.2% 59.0%

Table 4: Object Estimation Accuracy. We provide ground truth la-
bels (objects / walls) to segments in images. The precision is the per-
centage of images pixels that can be correctly classified. The recall
is the percentage of correctly-identified pixels that belong to objects.
No Coseg. indicates the estimation only by maximizing semantic
term EM based on each image independently, which results to iden-
tical performance as [12]. No Geo. indicates maximizing EM based
on the result of co-segmentation. Full is our full model that maxi-
mizes EG + EM based on the result of SFM and co-segmentation.

5.4. Object Estimation Accuracy
Our proposed framework can estimate non-wall objects in

3D space and in 2D images. We show example estimations in
Fig. 9. We evaluate the accuracy of detecting object regions
in images. The accuracy for estimating objects can by evalu-
ated by examining every pixel label against ground truth. The
result is shown in Tab. 4. Our proposed method shows sig-
nificant advantage over rival methods or alternative designs
of the pipeline, since it can effectively use multiple images
which carry greater information than only a single image. No-
tice that, the same training set is provided to different testing
methods.

5.5. Augmented Reality Application
Our method can robustly estimate the room layout from a

small number of images, which clears the way toward build-
ing many new applications. We developed a cellphone appli-
cation (the app) using a Nexus 4 android phone and a server.
A user uses the app to take photos in a room (e.g. the room
in Fig. 8). The app continuously captures new images as the
user explores new view points. At the same time, the captured
images will be uploaded onto the server via wireless. As more
images are being uploaded, the server runs feature detection
and matching. When enough features are found and matched,
the server will inform the user to stop taking more images.
Next, the server will run our layout estimation pipeline. After
the layout estimation is finished (usually less than a minute),
the user will be able to display new virtual objects (Fig. 8) in
the already captured images. Given the estimated layout, the
poses of virtual objects are precisely consistent with the actual
room layout. Our augmented reality app is markerless, thus

Figure 8: Interface of the mobile augmented reality application. The
virtual object (female statue) is automatically placed with the same
orientation as the real floor. At the bottom of the screen is a list of
virtual objects to select. At the top of the screen is a scroll bar for
switching between different images that are already captured.

applicable in more circumstances compared to marker-based
augmented reality [14].

6. Conclusion
In this paper, we proposed a multiview framework to solve

the cluttered room understanding problem. Our solution can
be executed efficiently using a standard computer system. Ex-
periment results demonstrate that our method produces more
complete and accurate result in estimating room layout and
foreground objects than alternative state-of-the-art methods.
A mobile phone application is given to demonstrate our su-
perior estimation results have great potential to enable new
markerless augmented reality applications.
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