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K-means and drawbacks

K-means

e K-Means is one of the most popular clustering algorithms, and it is easy to implement

o It seeks to minimize the sum of squared errors with an iterative optimization

e At every iteration, it moves the data centroids toward the closer cluster until no point can
move anymore

Drawbacks
It implements a Hill-climbing procedure
e Highly dependent on the choice of K

 Sensitive to initialization: how do we choose the initial partitions?

References: Prof. E. Messina, Lesson2 http://www.mind.disco.unimib.it/gallery/index.asp? cat=330&level=2
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Particle Swarm Optimization Algorithm

Optimization Algorithm
e iterative search process modeled after the social behavior of a bird flock
e each particle represents a potential solution

Goal

e find the “best” particle position i.e.
best in the evaluation of a given
fitness (objective) function

Q: how to cluster using PSO?
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The PSO algorithm code

How to implement the algorithm? 1. Initialize each particle to contain N, randomly se-
lected cluster centroids.

We wrote the full code of PSO using 2. Fort =110 tyax do

Matlab, in less than 100 lines of code! (a) For each particle i do

The code will be available in my personal page (b) For each data vector z,,

in the IRALAB website 1. calculate the Euclidean distance d(z,, m;;

www.ira.disco.unimib.it/people/ballardini-augusto-luis/ to all cluster centroids C';;

. . assign z, to cluster C); such that
Let we see the algorithm pseudo-code d(z,, m;;) = minge_y.... v {d(z,. m;.)}

111. calculate the fitness using equation (8)
(c) Update the global best and local best positions

(d) Update the cluster centroids using equations (3)
and (4).


http://www.ira.disco.unimib.it/people/ballardini-augusto-luis/
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Rules In the PSO algorithm (1)

Each particle i mantains:
* x; as the current position (currently initialized randomly)
* v, as the current velocity (currently initialized randomly)
* y,, as the personal best position

Each particle’s position is adjusted according to

. Ui,k (t+1) — 'Ui’k (t) + C] *rllk(t)*(yi,k(t) — xi,k(t) ) + CZ *Tzlk(t)*(yi/k(t) - xi,k(t) ) -‘,3

o x(t+1) = x; (t) + v;; (t+1)
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Rules In the PSO algorithm (2)

How to calculate the ‘best” position?

ey [t (1) > f((0)
yilt+ 1 { xi(t+1) if f(xi(t+1)) < f

A swarm represents a number of candidate clusterings (cluster
centroids) for the input; the fitness of these particles is measured as the

. . . . A
quantization error (over all the cluster centroids of the particle)! _‘
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/Rules (explained) in the PSO algorithm

this is the swarm: n=2 particles, each one has k=2 centroids with 2 classes (x and y)
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Rules (explained) in the PSO algorithm

Position vectors of the swarnm s

Velocity vectors of the swarm — ge—

BEST position of the swarm  t——

GLOBAL BEST position of the swarm <=

_xa
Xy
U ax
v,
_xa

X

X

]

vay

yvby
i

|

X 4

Fithess Particle 1

n particles...



g — R
Rules (explained) in the PSO algorithm

Initialization

with Random Poses (PSO) — » Compute Distances \

Assign inputs to Clusters

Update Cluster \
Cenftroids
Evaluate Fithess
Update Local Best /

and Global Best
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Rules (explained) in the PSO algorithm

How to calculate the position of the particle (already initialized with random values)
Please, consider {w,c1,c2} as constants and {r1,r2} as values sampled from U(0,1)

* 1% calculate new velocity of the particle
Ui (1) =w % v (8) + 71 1 ()% (Y (8) = x3(8) ) + €775 1 ()¥(F1(8) — x;(1) )

J N J N J
Y Y Y

inertia cognitive component social component

cognitive = distance of the particle from its personal best position
social = distance of the particle from the best particle found so far (i.e. the personal bests)

v;(t) and x; ,(t) are actual velocity / position
y; (1) is the local best position
§; (1) is the global best position
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Rules (explained) in the PSO algorithm

How to calculate the position of the particle (already initialized with random values)
Please, consider {w,c1,c2} as constants and {r1,r2} as values sampled from U(0,1)

* 1°* calculate new velocity of the particle
Uy (B+1) = w F 0y (8) + 077 (0¥ (Y, (8) — X3, (8) ) + €577 (8 *(F1(8) — x(2) )

J N J N J
Y Y Y

inertia cognitive component social component

e 2" calculate the new position of the particle
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Summarizing and going further!

The algorithm still needs a K value

The population-based search of the PSO algorithm reduces the effect that
initial conditions has, as opposed to the K-Means algorithm the search starts
from multiple positions in parallel

K-means algorithm tends to converge faster (after less evaluations) than the
PSO, but usually with a less accurate clustering [4]

The performance of PSO can further be improved by seeding the initial
swarm with the result of the K-Means algorithm (used as one of the particles,

while the rest of the swarm is initialized randomly).
This is know as Hybrid PSO and K-Means Clustering Algorithm [1]
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Rules (explained) in the PSO algorithm

Initialization ,
with Random Poses (PSO) " Compute Distances \
+
K-Means Assign inputs to Clusters

Update Cluster \
Centroids
Evaluate Fithess
Update Local Best /

and Global Best
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A sfatic example
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Resulting clustering with only k-means Resulting clustering using PSO with
k-means initialization.

Look at the blinking circle!
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A dynamic example
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