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Chapter 1

Introduction

Robots are artificial agents able to perform useful tasks. Such tasks span

from very simple assignments, like automatically performing repetitive

actions, to very complex ones, like autonomously driving in a crowded

urban environment. Robotic agents are becoming more and more com-

mon in everyday life and people are getting used to their presence. Ob-

taining an autonomous robot for our home is nowadays as simple as

going to the closest market and choose the one that better fits our needs,

from home-cleaning to garden-keeping and so on. Yet, even to perform

such simple tasks, the complexity of the underlying system is usually

pretty high.

Autonomous robots

When we buy a robotic agent to help us with a task, we usually want

it to operate in an environment it has never been in before. The robot

must thus be able to adapt to completely new working conditions while

keeping its ability to perform the requested task. It will need to somehow

perceive the surrounding space, the objects within it and the potential

obstacles on its way. It will also need to plan its actions in order to

achieve the final goal of the assigned task. Finally, it will need to execute

the planned actions and promptly react to unexpected modifications of

the surrounding space. These three steps are the robotic primitives that

compose the main cycle of an autonomous agent. The main cycle is

endlessly iterated from the moment the robot is turned on and until its

shutdown.
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Robotic perception

Robotic perception is the research branch that copes with the problem

of sensing the environment surrounding a robotic agent. It is of cru-

cial importance to the success while performing a task, yet it covers the

widest spectrum of unpredictability in autonomous robotic systems. It

is delegated to collect useful and reliable informations about, among the

most important, the static geometric structure of the surrounding envi-

ronment, its higher level interpretation and the dynamics of the objects

moving within it. Informations are collected by means of sensors, which

are any type of hardware able to convert physical magnitudes into dig-

ital signals. Acquired digital signals must then be processed by robotic

perception algorithms, in order to generate the desired final information

that will be used by the robotic agent.

The work behind this thesis spans the following relevant problems of

robotic perception, in the attempt of providing the informations a robotic

agent needs to safely operate in an environment.

Mapping the environment and self-localization

The first step towards understanding how the environment the robotic

agent is moving within looks like is the creation of a metric represen-

tation of the surrounding space. Typical sensors used to perform this

kind of reconstructions are cameras and laser scanners, although dif-

ferent sensors can be used. Neither cameras nor laser scanners are in

general able to gather enough information about the surrounding space

in a single shot, thus, while the robot is moving around, integration of

the informations over time is usually performed. Robot motion needs to

be properly modeled and is often part of the estimation result. This is

called the problem of Simultaneous Localization and Mapping - SLAM.

This problem has been tackled in literature from different starting points

and the resulting techniques can be roughly divided into global and lo-

cal mapping, the former requiring global consistency among observa-

tions and robot poses, the latter tackling only a small, local subprob-

lem. Among the global techniques, we can further distinguish between

on-line and full approaches. On the one hand, on-line (sequential) ap-

proaches process a stream of consecutive measurements (e.g. laser scans

or images), usually captured at high frame rates (≥ 20 fps). From this, an

accurate motion model of the observer can be estimated. These are prop-
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erly called SLAM systems. On the other hand, full (batch) approaches

process a set of sparse measurements, acquired from different points of

view and not necessary in the correct temporal order, that do not need

to be correlated by proper physical motion. These are called Structure

from Motion approaches. The output of global mapping systems are

typically a map, consisting in (more or less) sparse 3D points, and the

estimated poses of the observer (the robotic agent) at the time steps the

measurements were acquired. In some approaches the map consists of

line segments or planes, instead of points.

Among local mapping techniques, the closest to the purpose of au-

tonomous navigation is the so-called Odometry problem (Visual Odom-

etry in the case the sensors are cameras). It does not require a global

map to be created; instead, a local map is kept updated within a sliding

temporal window and is used to estimate the relative robot motion.

Interpreting the scene

As the reader may observe, the reconstructed maps generated by map-

ping systems alone provide too sparse information to be used for safe ac-

tion planning and execution. For complex action planning, higher level

description of the surrounding environment may be needed. In the last

decade, more and more sophisticated scene understanding approaches

are arising, that are able to provide more dense and semantically mean-

ingful models of the scene. Here “higher semantic” description means

that elements of the maps are not only correlated by geometrical and

physical constraints, but also by meaningful labels attached to each ele-

ment and by descriptions that involve two or more elements of the map.

As a simple example, it is enough to think about an indoor corridor. A

mapping system would output a map in which hundreds of points would

lie on the main surfaces of the corridor. Instead, a higher level inter-

pretation of the scene would, for example, determine the existence of a

ground plane, label it as ”floor” and as such as a surface over which the

robot can navigate and plan its actions. Beside the geometric structure,

a scene understanding algorithm would also try to estimate static objects

in the scene and label them as obstacles or as elements of the scene with

which to interact while performing a task.
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Object detection and tracking

In previous sections we have been considering static components of the

environment that surrounds a robotic agent. Yet, in most applications

the robot will be required to operate in presence of moving objects, like

people in an indoor environment or cars, pedestrians and bicycles in out-

door circumstances. An important branch of robotic perception regards

the study of such dynamic parts of the scene, in the attempt to detect

moving objects and to track their motions. Information about the dy-

namics of objects in the scene can be useful during the planning phase

to predict where such objects may be found in the near future, e.g. in

order to evaluate actions that avoid collisions. The act of detecting ob-

jects is very often accompanied by the effort of categorizing them. Ob-

ject categorization may be useful, for example, because different object

categories may implicate different dynamic models, or because the as-

signed task demands to interact with a certain category of objects in the

scene. Tracking systems can gain a great boost in performance by inte-

grating information about the static elements of the scene and, especially,

about the self-estimated motion of the robotic agent itself. Mapping and

scene understanding approaches can also improve the quality of their re-

constructions by exploiting information about dynamic elements of the

scene. Indeed, as will be shown later in this chapter, there exists a very

strong interaction between these three branches of robotic perception.

Planning actions

Exploiting the informations provided by the perception systems, the ro-

botic agent must be able to find its way of performing the requested task.

In general, a task may involve mere navigation, thus planning the path

the robot should follow to reach the destination point, or more complex

interaction with elements of the scene, like manipulation of objects and

interaction with humans. In any case, the output of an action planner is a

set of intermediate configurations of the robot (e.g. poses with respect to

the environment, conformation of joints, ecc.) that are needed to reach

the final configuration. This research branch was not part of the work

performed in this thesis.
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Executing actions

Once the future actions have been planned, the robotic agent must be

able to execute them as faithfully as possible. The quality of the ex-

ecution will affect the performance of the global task. Action execu-

tion is the casting of a bridge between the algorithmic reasonings of the

planning system and the real, imperfect, noisy hardware support of the

robotic agent. The action execution sub-cycle is usually performed at

a higher frequency with respect to the planning chain and is in charge,

among other things, of conducting the robotic platform to the planned

configuration, while respecting the physical constrains of the robot (and,

in the case of an autonomous car, of its passengers). A small contribu-

tion was made by the author of this thesis in the field of action execution

and is described in Appendix B.

About the work in this thesis

This thesis presents the research work the author carried on during his

PhD on the topic of robotic perception for autonomous navigation. In

particular, the efforts focus on the Self-Localization, Scene Understand-

ing and Object Detection and Tracking problems, proposing for each of

these three topics one or more approaches that present an improvement

over the state-of-the-art. In some cases the proposed approaches mu-

tually exploit the generated information to improve the quality of the

final results. In particular, the Object Detection and Tracking approach

presented in Chapter 4 exploits self-localization information to project

object hypotheses into the surrounding 3D world and track them in the

3D space. Also, the Indoor Scene Understanding approach presented in

Chapter 5 bases its initialization process on the same self-localization

information, while the integration of object detections in the scene es-

timation process is currently under development and will therefor not

be discussed in this thesis. Finally, the real-life implementation of an

autonomously driving car presented in Chapter 6 exploits both the self-

localization approaches presented in Chapter 3, while the adaptation of

the approaches presented in Chapters 4 and 5 to the outdoor autonomous

driving task are currently being implemented.

A brief introduction on all the ways approaches tackling the three

mentioned problems may benefit from mutual interaction is presented in

the following sections.
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Figure 1.1: Diagram of the interaction between Mapping and Self-Localization and

Scene Understanding systems. The left-to-right arrow shows that sparse 3D reconstruc-

tion and observer’s pose estimation can be used as a prior to build higher level scene

interpretation hypotheses. The righ-to-left arrow shows that higher level information

can be exploited to introduce strong geometric constraints in the mapping process.

SLAM and Scene Understanding interaction

Both Mapping and Self-Localization and Scene Understanding systems

aim at the creation of a map of the surrounding environment, possibly

including its geometric structure and static objects. The main difference

is in the level of semantic description of the estimated map. Despite this

difference, the two problems are closely related and both systems can

considerably improve their performances exploiting each other’s infor-

mations. For example, a Scene Understanding system could start gen-

erating scene reconstruction hypotheses based on a sparse SLAM re-

construction, instead of hypothesizing them from scratch, which could

make the difference in a realistic-time computation. On the other hand,

a SLAM system could cluster the sparse 3D features it usually works

on, according to the higher level scene interpretation, thus introducing

strong geometric constraints in the mapping process. Figure 1.1 shows a

diagram of this type of interaction.

SLAM and Object Detection and Tracking interaction

Mapping and Self-Localization systems process sensor data in order to

generate a consistent map of the surrounding environment. Maps are

commonly desired to represent the static components of the space, thus,

if some prior on which parts of the observed scene are not static (e.g.

moving objects) is given, the mapping algorithm could prune out those

parts and be able to generate a better reconstruction. On the other side, as
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Figure 1.2: Diagram of the interaction between Mapping and Self-Localization and

Object Detection and Tracking systems. The left-to-right arrow shows that sparse

3D reconstruction and observer’s pose estimation can be used to prune out false posi-

tive detections and physically inconsistent motion estimations. The right-to-left arrow

shows that dynamic elements of the observed scene can be removed from the mapping

process to improve its performances.

shown in Figure 1.2, Object Detection and Tracking systems can exploit

precious informations about the observer’s motion and pose with respect

to the environment to prune out false positive detections and physically

inconsistent object motions. While this latter direction of interaction is

pretty common, the former has rarely appeared in the literature.

Scene Understanding and Object Detection and Tracking interac-

tion

This kind of interaction involves two higher semantic estimation prob-

lems. In fact, both Scene Understanding and Object Detection and Track-

ing aim at generating a meaningful interpretation of what is happening

in the surrounding space, more than merely estimate anonymous and

semantically uncorrelated sparse 3D features. Thus, as shown in Fig-

ure 1.3, higher level information about the scene geometric structure can

allow to further prune out semantically wrong detections and motions

(e.g. flying terrestrial vehicles, objects moving through walls, ecc.). On

the other hand, information about objects moving in the scene can influ-

ence the interpretation of scene structure. An explicative example of this

latter case would be the case where a scene structure hypothesis includes

a wall between the observer and a reliably detected object. In this case,

a strong prior on that wall can be applied to either consider it transparent

or placed in the wrong position.
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Figure 1.3: Diagram of the interaction between Scene Understanding and Object De-

tection and Tracking systems. The left-to-right arrow shows that scene geometric struc-

ture (layout) can be used to further prune out false positive detections and physically

inconsistent motion estimations. The right-to-left arrow shows that reliable object de-

tections in the observed scene can be exploited to introduce strong constraints on scene

structure hypotheses.

Figure 1.4: The global chart of interactions.

Global overview of the research work

Figure 1.4 shows the global diagram of possible interactions between

the three problems mentioned so far. Throughout this thesis, innovations

will be presented in the fields of Self-Localization (Chapter 3), Object

Detection and Tracking (Chapter 4) and Scene Understanding (Chap-

ter 5). When tackling these problems, mutual interactions were exploited

in some cases, while in other cases they were collapsed in the attempt of

solving the problems in a joint fashion.

Finally, a real world application is presented (Chapter 6), which re-

ports all the work that has been carried on to robotize (high level soft-

ware, mechanics and electronics) an autonomous vehicle (a golf cart)
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and make it capable of autonomous driving in crowded environments.

This example of application clearly shows the importance of high level

algorithmic reasoning, including the above mentioned problems, to en-

able a robotic agent to safely operate in common, everyday environ-

ments. The presented autonomous vehicle has been involved in several

live demos throughout these years, proving its effectiveness and capabil-

ities to the wide public.
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Chapter 2

Related work

This chapter presents an overview of the state-of-the-art approaches for

the main topics discussed in this thesis.

2.1 Robot Self-Localization

It has been largely discussed the possibility of estimating the path of a

robot, as it moves, only exploiting proprioceptive sensors. Although in-

teresting results have been achieved on short distances and with accurate

knowledge of the motion patterns [1], current localization approaches

cannot, in general and over long distances, achieve sufficiently precise

results by using purely dead reckoning, e.g., IMU data integration or

wheel based odometry in the case of mobile robots [2, 3, 4]. It must be

also noticed that in urban environments the GPS system, apparently an

immediately available solution, has an absolutely not adequate reliabil-

ity, with respect to the localization and navigation requirements, due to

its precision and the frequent lack of signal [5] [6]. Global and local

robot self-localization approaches have thus been proposed, that exploit

exteroceptive sensors such as ranging devices (lasers, sonars) and cam-

eras.

2.1.1 Laser-based Global Localization

Most of the state-of-the-art solutions for the 2D - 3DoF localization

problem are primarily designed for indoor robotic environments or, more

generally for those settings where the analysis of the motion in a 3D
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space can be simplified, favoring an estimation of the robot pose, lim-

ited to a 3DoF pose in the 2D plane [7, 8, 9].

Full 3D approaches known in the literature [5, 6, 10] use methodolo-

gies that adapt 2D movements to a 3D space. This approaches adopt a

3DoF probabilistic motion model in 2D that do not allow accurate mod-

eling of the uncertainty of a 6DoF movement in a 3D space. In [6] the

robot poses are modeled only in 2D, i.e. the state vector includes only

the components x, y and ϑ (the yaw angle). The other three compo-

nents z, the roll angle ϕ, and the pitch angle ψ, are calculated from the

2D estimate and from the structure of the ground surface. Furthermore,

the motion model does not consider the interactions between the differ-

ent error source components, introducing uncertainty on the movement’s

single components independently. The independence between the single

pose components is also assumed in [10].

In [5] a multilevel environment representation called multi-level sur-

face maps is used. This technique is proposed as an extension of the

elevation maps used in [11] and introduced in [12], and allows modeling

vertical structures within a grid map used in localization with laser range

finders. However, these structures do not allow the representation of a

typical urban outdoor complex situation, like a bridge or a multilevel

parking lot. Furthermore, in [5] the motion model, more sophisticated

with respect to the one proposed in [6], uses as a starting basis an evolu-

tion of the model introduced in [13] and similar to that illustrated in [3],

again a purely two dimensional motion model.

2.1.2 Vision-based Localization and Mapping

There are several state-of-the-art approaches, proposed in the last decade,

that tackle the Localization and Mapping problem from different starting

considerations. In particular, a big distinction should be made between

real-time and non-real-time approaches.

Among the formers, the SLAM (Simultaneous Localization and Map-

ping) methods are primarily based on Bayesian filtering [14, 15, 16, 17,

18, 19, 20, 21, 22], although Strasdat et al. [23] recently questioned this

historical approach. In the past few years, research in this field has fo-

cused on the problems of:

• Improving the faithfulness of the represented uncertainty [15, 18,

20], in particular by changing the way map points are parametrized

in the filter state. The three most known parameterizations are the
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Inverse Depth [15], the Inverse Scale [18] and the Anchored Ho-

mogeneous Points [20].

• Improving the mapping scalability by splitting the global map into

sub-maps, parameterizing the relationships between sub-maps and

performing loop closure [24, 25, 26, 27].

• Improving the computational efficiency by restating the SLAM prob-

lems as sparse non-linear problems and retrieving exact solutions [28,

25, 29].

A key feature of all SLAM approaches is to incorporate innovation

in the filter from each image in a sequence, approach questioned by the

PTAM approaches which, instead, rely on bundle adjustment optimiza-

tion of a smaller number of key-frames [30, 31, 32, 33]. In the PTAM ap-

proach the map is generated in a separate, non-real-time thread perform-

ing structure from motion reconstruction, while the camera localization

is performed in real-time exploiting Lie algebra based optimization.

The main drawbacks of all the so far mentioned techniques span

scarce robustness to noisy initialization, high sensibility to the fidelity

of the motion and noise models, bad scalability and the limited or absent

ability of refining past estimations.

The group of non-real-time approaches is primarily focused on the

global consistency of the map and of the camera poses. Global bun-

dle adjustment techniques have been investigated to solve this problem.

These methods usually process sparse sets of images from which partial

geometry is recovered and optimized [34, 35, 36]. They are often used

to model large scale environments such as cities [37, 38, 39]. The main

drawback of these methods is the computation time needed to perform

the matching among all the images. Recent implementations exploit

GPU computing for feature extraction and matching [40], thus consis-

tently speeding up the performances. Nevertheless, real-time computa-

tion for SfM on all frames of a video sequence is not yet possible on

common computers.

2.2 Object detection and tracking

2.2.1 Object detection

An ideal object detection system should be able to detect its targets in

the observed scene independently on their orientation, position, scale,
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and also with some degree of occlusion.

An important challenge is to gain the capability of generalization,

i.e., detecting the objects of a certain class and not only one instance,

despite the differences in the object shape from one instance to the other

in the class. An important thrust forward was introduced with corner

detectors [41, 42, 43, 44, 45, 46, 47], blob detectors [48, 49, 50, 51, 52,

53], and region descriptors [54, 49, 55, 50, 52]. The combination of

detectors and descriptors provide means to describe image patches in a

way that is invariant not only with respect to orientation and position, but

also to scale and partial occlusion. Basing on such descriptors, higher

level object detectors can be developed.

Bag of words

Csurka et al. in [56] first introduced the term bag of keypoints to describe

methods based on sets (the bags) of visual cues (the words, in some

cases called keypoints or features), learned during a training phase and

used to determine if, given an unknown image, there are instances of

objects from the learned categories present in it. In particular, in [56]

affine covariant regions described by means of the SIFT descriptors are

used to collect the visual cues, which are then clustered using k-means

to build the visual dictionary (the bag of words). At detection time,

an SVM is used to decide whether an object is present in the image or

not. In [57], the same authors expand the previous approach by using a

boosted classifier instead of the SVM.

Please refer to the work presented by Zhang et al. in [58] for a com-

prehensive study of bag of words based methods, evaluated in conjunc-

tion with different feature detectors and descriptors.

Recognition with segmentation

While bag of words techniques are limited to indicate if and roughly

where an object is located within an image, the problem of accurately

segmenting its contours is very challenging, in particular in presence of

partial occlusions.

When an instance of object is detected, segmentation can be per-

formed back-projecting the object model into the image [49], by fitting a

trained segmentation model to the scene [59, 60], or by pre-segmenting

the image in regions and then matching them with the learned parts of

the model [61, 62, 63, 64]. These latter approaches were conceived to
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better tackle the problem of non-rigid objects, for example humans. In

fact, in shape-based object recognition, see e.g., [65], the usage of statis-

tics on the spatial frequencies of the descriptors is proposed. This is a

quite effective approach whenever the objects to be detected have more

or less constant shapes, and with regular textures; these approaches deal

well with occlusions and position, orientation and scale changes. Such

approaches do not perform well, on the other hand, on objects such as,

e.g., people, that can appear in a wide set of different shapes and pos-

tures.

In 2003 Leibe and Schiele in [66] proposed a method that does not re-

quire an exact a priori knowledge of the forms and shapes of the objects

to be detected. This feature makes the system more complex, as it allows

large intra-class variations. In [67] the same authors, with Leonardis,

formalized their approach in the so-called ISM (Implicit Shape Model)

and, later [68], with Mikolajczyk, they extended it to include different

descriptors on common probabilistic grounds. At training time, the ISM

based approaches learn a set of local segmentation masks that will be

used at recognition time to generate the final object segmentation.

Kumar and Hebert in [69] and He et al. in [70] approach the seg-

mentation problem by assigning each pixel of the image a class label

and solving for the whole image by energy minimization and Bayesian

inference, respectively. A similar approach is the one presented in [71]

and called TextonBoost.

2.2.2 Object tracking

The problem of object tracking identifies with the ability of a system of

preserving the correct identity of an object through time despite detec-

tion errors, occlusions and presence of other (similar) objects. There are

many state-of-the-art approaches for object tracking, covering substan-

tially different application domains such as, for example, static surveil-

lance camera systems, mobile robotic vision systems for obstacle avoid-

ance, etc.

Background modeling object tracking

The first, intuitive way of discriminating objects and estimating their

motion is to keep an updated model of the scene background. Any ob-

ject can then be extrapolated as an outlier to this model. This intuition

is straightforward in the case of a static observer, while it becomes very



16 Chapter 2. Related work

complicate if the observer is moving. In the former case, the most rel-

evant issues are related to the model ability to adapt to scene changes,

e.g. slow and sudden changes in illumination, waving trees etc.

Among the first proposed approaches, Jain and Nagel [72] tackle the

adaptation problem using frame-difference accumulation. Mixture of

Gaussians have been proposed in [73] to model the per-pixel color dis-

tribution, extended in [74] to add robustness with respect to shadows,

while texture-based background modeling is proposed in [75]. Object in-

stances extrapolated from the background then need to be tracked within

a spatial-temporal context [76]. An efficient GPU-based background

modeling implementation is presented in [77].

When the observer is not static, the background can be modeled

in 2D by, for example, compensating its motion exploiting the optical

flow [78, 79, 80], or in 3D, exploiting for example Structure from Mo-

tion information [34].

Fixed model tracking

As their name says, these kind of methods build a model of the object be-

ing tracked off-line or at the first frame and keep it unmodified through-

out the video sequence. At each frame the model can be searched for

in the whole image [81, 82, 83, 84, 85, 86] or in a smaller subspace

(exploiting motion prediction) [87, 88] to prevent drifting. Changes in

model viewpoint can lead to mismatch the tracked target, thus several ap-

proaches proposed models that can deal with affine transformations [81,

82], that exploit region descriptors for template matching [83, 84] or that

build a multi-view model [85] that can be used in conjunction with an

SVM [86]. Techniques that rely on motion predictions face the prob-

lem of social interactions, i.e., for example, the fact that the trajectory

of human walking in a crowded environment will be influenced by the

trajectories and behaviors of other people. The work presented in [89]

associates a motion model with social reasoning to account for these

common phenomena.

Adaptive model tracking

As said in the previous section, changes in model viewpoint, illumina-

tion conditions and object non-rigidity can seriously degrade the quality

of the tracking. In literature there are many approaches that tackle these
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difficulties by keeping an updated model of the tracked object, dynam-

ically changing throughout the tracking. Conceptually, the main draw-

back of such approaches is the risk of adapting too fast to the changes,

leading the tracker to detach from the originally tracked object and attach

to a different one or even to the background. We can roughly distinguish

two main categories of adaptive model tracking techniques: generative

and discriminative.

In the generative case, the tracker keeps an updated model of the ob-

ject based on optical flow features [90, 91, 44, 92], color histograms

and mean-shift [93, 94], object sub-parts [95], modeling partial occlu-

sions [96] or combinations of two or more of the previous [97].

In the discriminative case, a (usually binary) classifier is trained and

updated on-line and used to discriminate between background and object

foreground at each frame. For example, in [98, 99] the idea of including

the background in the training set is used to automatically discriminate

the features to be used in a mean-shift tracker, while in [100, 101] a set of

weak classifiers are combined together to generate a strong global one.

In the recent years, hybrid approaches that combine fixed and adap-

tive model tracking have also been proposed, such as [102, 103, 104].

2.3 Indoor scene reconstruction

The work presented in Chapter 5 is at the intersect of two major fields

of Computer Vision: Indoor Scene Reconstruction, and Structure from

Motion. While the end result is that of Indoor Scene Reconstruction, the

proposed approach hinges on the success of sparse reconstruction meth-

ods, such as those studied in the Structure from Motion (SfM), Simul-

taneous Localization and Mapping (SLAM), or Parallel Tracking and

Mapping (PTAM) literature.

All of the approaches mentioned in Section 2.1.2 aim at a camera mo-

tion estimation and a sparse reconstruction of the environment in terms

of 3D point clouds. For a better interaction with the environment, robots

and human-interacting applications need a semantically higher level rep-

resentation of the environment. Such representation should allow to eas-

ily infer navigability maps and movement boundaries of the surrounding

space.
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Scene layout estimation

Many works have been proposed to solve the problem of indoor scene

estimation, addressing it with techniques from different research areas

like Bayesian filtering and Machine learning. Most of them face the

problem of estimating the indoor layout from single images [105, 106,

107, 108, 109, 110, 111, 112, 113, 114]. Some other works use sparse

images or image sequences [115, 116, 117, 118, 119].

Lee et al. [106] proposed a method to generate plausible interpreta-

tions of a scene from a collection of line segment. They estimate vanish-

ing points and infer the three dimensional structure of the indoor scene in

the image. A slightly different approach was used by Hedau et al. [107].

In this work they model 3D room hypotheses with a parametric 3D box

(cuboid) and generate room hypotheses by sampling pairs of rays from

two of the estimated vanishing points. They also propose a structured

learning approach to rank sampled box layout hypotheses.

In [110] Lee et al. added volumetric reasoning to their previous work

in order to incorporate physical constraints stemming from the 3D inter-

action between objects. They also use more geometrical evidence from

the image in order to rank hypotheses (Orientation maps and Geometric

context). In [111] Hedau et al. added an object detector to their previ-

ous work, which generates 3D object hypotheses by sliding cuboids in

the room layout generated as in [107] and by scoring them with a linear

function learned with an SVM approach.

Wang et al. [109] address the problem of jointly recovering the struc-

tural layouts of rooms and the furniture present in it. They tackle the

problem of heavy clutter and intra-class appearance variation in indoor

scenes by modeling them with latent variables and by training the detec-

tor to disambiguate furniture and room layout. Their approach does not

need the clutter to be hand-labeled in the training set.

Gupta et al. [112] introduce physical representation of objects, ac-

counting for their volume, mass and mechanical configurations between

objects. This representation allows them to take into account global ge-

ometric constraints between volumes and the laws of statics. They build

their representation starting from an empty scene reconstruction and it-

eratively adding consistent and physically plausible components. Their

work focuses on outdoor scenes.

Gupta et al. [113] presented a human-centric approach for indoor

scene understanding. Their work aims at jointly estimate the scene struc-
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tural layout and model possible human actions within it. They explicitly

use human physical models to validate hypotheses.

Schwing et al. [114] propose an efficient decomposition of higher

order potentials used in [109] to pairwise potentials extending the con-

cept of integral images to geometry. As a result both learning and infer-

ence can be performed orders of magnitude faster, which allows to avoid

search space reductions and thus leading to better estimations.

All of the above mentioned approaches tackle the problem of infer-

ring the indoor scene layout from single images. While being a challeng-

ing goal, this problem does not allow for exploration of the scene or for

any interaction of robots or humans with the environment. Furthermore,

except for [114], none aims at performing in near-real-time. Pursuing the

need for reliable scene understanding while exploring a scene, which is

typically the case, for example, of an autonomous robot, multiple-view

approaches have been explored.

Sinha et al. [116] proposed a multi-view stereo method to generate

piecewise planar depth maps from sparse images. They first estimate

3D point clouds with Structure from Motion and 3D line segments. To

enforce plane hypotheses they then use 3D point and plane incidence

and photo-consistency cues. Finally they generate the piecewise pla-

nar depth map solving a Multi-Label MRF minimization problem with

graph-cuts. The minimization formulation exploits vanishing directions

and free space violation constraints for visibility rays.

Tsai et al. [119, 120] presented a work where they focus on real-time

indoor scene estimation tasks for mobile robot applications. Compared

to other state-of-the-art approaches, this work is the most related to the

work presented in Chapter 5. In fact it shares the same idea of exploit-

ing video sequences to validate and support layout hypotheses and the

decision of dropping the Manhattan world assumption. It also shares the

decision of avoiding any kind of learning, which, due to the huge vari-

ability of indoor scenes, would require an extensive training dataset. In

their work, however, they focus on indoor scene reconstruction for mo-

bile robots navigation. This allows to greatly simplify the problem, since

information such as the roto-translation between the camera and the floor

plane can be supposed to be known. In the approach proposed in [120]

they also assume the exact pose of the robot at each time step to be

known. This information is often provided when the camera is mounted

on a rigid mobile robot (no suspensions on the wheels) equipped with

a laser-based self-localization system, but this is in general not the case
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when the camera is either mounted on a flying drone or is represented by

a hand device held by a human. Furthermore, they generate hypotheses

by projecting on the 3D ground plane 2D floor-walls intersection lines

observed in the images, which means that if that portion of the scene is

not observed, the hypotheses will not be generated.

The work presented in Chapter 5 focuses on estimating the indoor

layout from a fully 6DoF moving monocular observer (which move-

ments are unknown), with no requirements on which part of the scene is

being observed, aiming at performing in real-time.



Chapter 3

Robot Self-Localization

This chapter presents the research work 1 on the Self-Localization prob-

lem of a mobile robot. Two main aspects of the complex global problem

are dealt with, i.e. the motion model used to represent the uncertainties

over the physical dynamics of a wheeled robot and the localization of a

visual observer within a known 3D map.

3.1 An effective 6DoF motion model for 3D-6DoF Monte

Carlo Localization

This research activity deals with the probabilistic 6DoF motion model of

a wheeled road vehicle. It allows to correctly model the typical errors in-

troduced by mere dead reckoning motion propagation systems. To stress

the fact that an appropriate motion model is of crucial importance, an-

other model, which was previously developed, is shown not to allow a

correct representation of the uncertainty, therefore misguiding 3D-6DoF

Monte Carlo Localization. Experiments are also presented, testing the

proposed approach on the real world autonomous vehicle presented in

Chapter 6, to demonstrate that the proposed model improves the results

of a Monte Carlo Localization system allowing a consistent determina-

tion of the 6DoF vehicle pose.

1Pleas refer to Section 3.3.1 for the acknowledgments.
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3.1.1 Introduction

Mobile robot localization is a challenging task that has been intensively

analyzed over the last few years, see e.g. [5] [6] [3] being itself at the

base of any task that could be assigned to a mobile robot.

The accuracy a robot can achieve in localization assumes a key role

in order to avoid collisions against the structural elements belonging to

the surrounding environment, e.g. against static and dynamic objects

placed within the scene. This becomes even more critical in the field

of autonomous driving, where a proper and accurate localization is of

primary relevance because on it depends the individuals safety.

The risk of collisions against the environmental static components

such as sidewalks, walls, guardrails, or against the environmental dy-

namic components such as other vehicles, pedestrians and animals,m ust

be reduced to a minimum, foreseeing a series of emergency procedures

to be activated in case of unexpected situations.

In urban settings, autonomous driving closely relates to mobile ro-

botics problems, in particular whene there is need to have a global lo-

calization of the vehicle. As discussed in Chapter 2 robus localization

cannot be managed using purely dead reckoning, i.e. IMU and wheel

based odometry [2, 3, 4]. Wheel sliding, e.g., due to contact with the

ground surface, weather conditions, unexpected values of the wheels di-

ameters, etc., require the use of external sensors and the corresponding

algorithms, to determine the vehicle position [3]. It must be noticed that

in urban environments the GPS system, apparently an immediately avail-

able solution, has an absolutely not adequate reliability, with respect to

the localization and navigation requirements, due to the frequent lack of

signal [5] [6].

While the state-of-the-art provides different solutions for the 2D -

3DoF localization problem, these solutions are primarily designed for

indoor robotic environments, where the analysis of the motion in a 3D

space can be simplified to a 3DoF pose in the 2D plane. The inadequacy

of these simplifications in a urban outdoor situation has driven this re-

search work to develop a different probabilistic motion model, based on

the modeling of a spatial generic movement considering all the compo-

nents of the 6DoF state vector. The proposed model, which is adaptable

to different types of vehicle kinematics (differential, Ackerman), accom-

modates 6DoF movement predictions even without a complete “control”

vector, i.e., when some component is missing; this can be the case of a
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wheeled vehicle not equipped with an inertial measurement unit.

The next section introduces the proposed motion model, while Sec-

tion 3.1.4 compares the proposed model with a previously developed

model, used as baseline method for comparison, which made the 3D-

6DoF Monte Carlo Localization fail, in order to clarify the relevance of

an appropriate and accurate motion model. Section 3.1.5 concludes by

presenting the experimental results.

3.1.2 Proposed motion model

The proposed motion model bases on the 2D-3DoF formulation pre-

sented in [3, Sect. 5.4]. In that work a displacement between two robot

poses is divided into a sequence of 3 steps: an on-site rotation δrot1, a

translation δtransl, and a last on-site rotation δrot2. A graphic represen-

tation of this well-known motion model is shown in Figure 3.1(a). This

decomposition allows the introduction of the uncertainty on each step in

the form of a normally distributed error. These errors are zero-mean and

are parameterized by a standard deviation that is dimensioned according

to the disturbances acting on each step. The composition of the applied

uncertainties on each step gives a realistic uncertainty distribution af-

fecting the pose after the application of the motion. Figure 3.1(b) shows

how particles in a Monte Carlo Localization system spread accordingly

to the motion model.

Similarly, the full 3D motion model is required to account for the

motion in all the 6 degrees of freedom of a robotic agent and, at the same

time, it should divide the whole displacement in a sequence of steps in

order to apply a parameterized uncertainty on each of the components of

the movement. In the same fashion as the above method, the composition

of the steps with the applied uncertainty should result into a realistic

uncertainty distribution on the final pose, i.e., after the application of the

motion.

Common approaches for extended odometry (dead reckoning) are

able to merge the estimates of displacements in all 6 DoFs, by inte-

grating the odometry information, i.e., displacements estimated from the

rotation of the wheels, with the inertial informations provided by IMU

sensors. In particular, ∆x, ∆y, and ∆ϑ (yaw) can be output by a wheel

odometer, while the ∆ϕ (roll), ∆ψ (pitch), and ∆z, can be output by an

IMU. Unfortunately, often robotic platforms are not equipped with iner-

tial measurement units. To overcome this problem, the proposed method
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(a)

(b)

Figure 3.1: (a) The well-known 2D-3DoF motion model from [3, Sect. 5.4]. The mo-

tion between two consecutive robot poses is torn down into three steps, i.e. on-site

rotation δrot1, translation δtransl, and on-site rotation δrot2. (b) Particles of a Monte

Carlo Localization system spreading accordingly to the motion model and generating

the typical banana-shaped posterior distribution.

includes a set of additional parameters to be applied when the extended

odometric readings lack some components, e.g. the IMUs.

The state vector has six components, to represent the pose of a rigid

body in a 3D world xt = |x, y, z, ϕ, ψ, ϑ|′. Let us group the first 3

components in positiont and the last 3 in orientationt, so that xt =

|positiont, orientationt|
′.

The proposed decomposition of a displacement bases on six steps,

which can be grouped in 2 different sets: 3 steps to define the new posi-

tion positiont
2, and 3 steps to define the new orientation orientationt.

On each step a normally distributed uncertainty will be added. Let us

now review the first 3 steps, with reference to Figure 3.2, which give

positiont.

1. Rotation δyaw1 , which represents a rotation around the Z axis, is

necessary to align the orientationt−1 toward positiont in the XY

plane; this step corresponds to 2D-3DoF rotation δrot1.

2. Rotation δpitch1 , which represents a rotation around the Y axis, and

2The notation (abc) refers to the prediction of the state abc, obtained by the application of the motion

model.
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Figure 3.2: The proposed motion model decomposition and its parameters. A displace-

ment is expressed in terms of a rotation δyaw1
about the Z axis, a rotation δpitch1

about

the Y axis, a translation δtransl along the new X axis, and a final generic 3D rotation

(composition of three elementary rotations) to align the frame with the final robot po-

sition. The 3D banana-shaped box represents the 3σ volume where the particles of a

Monte Carlo Localization system may spread as a result of applying Gaussian noise to

each of the 6 basic movements that describe a displacement.

is also necessary to align orientationt−1 toward positiont, but in

theXZ plane; this step introduces the possibility of a change in the

value of the elevation.

3. Translation δtransl, which represents a translation along the X axis;

this translation moves the reference system, after the rotation by

δyaw1 and δpitch1 , to positiont; this step corresponds to 2D-3DoF

translation δtransl.

The three parameters δyaw1 , δpitch1 , and δtransl can be seen as the coordi-

nates, in a spherical coordinate system, of the origin of the new pose xt.

To compute the motion parameters from the extended odometer read-

ings, equations 3.1 to 3.3 can be used.

δyaw1 = arctan(
∆y

∆x
) (3.1)

δpitch1 = arctan(
∆z

√

∆x2 +∆y2
) (3.2)

δtransl =
√

∆x2 +∆y2 +∆z2 (3.3)
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For the computation of orientationt, the proposal is to compose the

orientation(t−1) with a generic rotation, which is in turn the composi-

tion of 3 last rotation steps. The parameters of these steps, i.e., δroll,

δpitch2 , δyaw2 , are sensed directly by the extended odometer.

δroll = ∆ϕ (3.4)

δpitch2 = ∆ψ (3.5)

δyaw2 = ∆ϑ (3.6)

In order for the motion model to generate realistic motion uncertainty,

it is necessary to add randomness to the components of the state vector

xt, by acting on the parameters of the motion model. This randomness

will be normally distributed, with zero mean, and the standard deviation

of the components can be calculated according to the following consid-

erations, which are specific to each single step.

1. Rotation δyaw1 , as in [3], is influenced by:

• how much the vehicle has rotated, as measured by the wheel

odometer;

• how much space the vehicle has traveled, as measured by the

wheel odometer.

For both factors, the larger the factor, i.e., the change of orienta-

tion and/or the traveled distance, the larger the potential mismatch

between the odometric measure and real pose.

2. Rotation δpitch1 , is influenced by:

• how much the z coordinate has changed, i.e., by ∆z, as mea-

sured by the extended odometer, from the IMU.

3. Translation δtransl is influenced by:

• how much space the vehicle has traveled, as measured by the

extended odometer; the longer the traveled distance, the larger

the potential mismatch between the odometric measure and

real pose;
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Figure 3.3: REAL and CALCULATED (basing on odometry) trajectories, which im-

pact on the uncertainty on δtransl, as due to a change in pitch (∆ψ).

Figure 3.4: REAL and CALCULATED (basing on odometry) trajectories, which im-

pact on the uncertainty on δtransl, as due to a change in roll (∆ϕ).

• how much the vehicle has rotated about the Y axis, i.e., the

variations ∆ψ, as measured by the extended odometer. A

change of pitch while performing a translation, represents a

situation where the motion is taking place over a non planar

surface. Therefore the traveled distance is larger and the un-

certainty is also larger. Figure 3.3 illustrates the translation re-

sulting from integration of odometry, and the real translation.

• how much the vehicle has rotated about the X axis, i.e., the

variation in roll ∆ϕ, as measured by the extended odometer.

Figure 3.4 illustrates the translation resulting from integration

of odometry, and the real translation.

• how much the vehicle has rotated about the Z axis, i.e., the

variation ∆ϑ, as measured by the extended odometer. Figure

3.5 illustrates the translation resulting from integration of odo-
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Figure 3.5: REAL and CALCULATED (basing on odometry) trajectories, which im-

pacts on the uncertainty on δtransl, as due to a change in yaw (∆ϑ).

metry, and the real translation.

4. Rotation δroll is influenced by:

• how much the vehicle has rotated around its X axis, i.e., vari-

ation ∆ϕ, as measured by the extended odometer, from the

IMU.

5. Rotation δpitch2 is influenced by:

• how much the vehicle has rotated around the Y axis, i.e., the

variation∆ψ, as measured by the extended odometer, from the

IMU.

6. Rotation δyaw2 is influenced by:

• how much the vehicle has rotated around the Z axis, i.e., the

variation ∆ϑ, as measured by the extended odometer, from the

wheel odometer.

• how much space the vehicle has traveled: the longer the trav-

eled distance, the larger the potential mismatch between the

odometric measure and reality, as measured by the wheel odo-

meter.

Basing on the above mentioned influences, we can define the standard

deviations of the noise representing the uncertainty affecting the 6 steps.

Finally, in order to gain a better control on the model behavior and sim-

ilarly to what has been done in [3], we introduce a weight α, for each

step.

σyaw1 = α1 · δyaw1 + α2 · δtransl (3.7)
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σpitch1 = α3 ·∆z (3.8)

σtransl = α4 · δtransl + α5 · δyaw2 + α6 · (δroll + δpitch2) (3.9)

σroll = α7 · δroll (3.10)

σpitch2 = α8 · δpitch2 (3.11)

σyaw2 = α9 · δyaw2 + α10 · δtransl (3.12)

The IMU uncertainty is assumed not correlated with the wheel odometer

uncertainty. Moreover, notice that σroll, σpitch1 , and σpitch2 are influ-

enced only by the IMU part of the extended odometer, while σtransl is

influenced both by the wheel odometer and the IMU, see Figures 3.3,

3.4, and 3.5.

The sampling motion model will be the following:

δ̂yaw1 =δyaw1+

SAMPLE {α1 · δyaw1 + α2 · δtransl }
︸ ︷︷ ︸

σyaw1

(3.13)

δ̂pitch1 = δpitch1 + SAMPLE {α3 ·∆z}
︸ ︷︷ ︸

σpitch1

(3.14)

δ̂transl =δtransl+

SAMPLE








α4 · δtransl + α5 · δyaw2+

α6 · (δroll + δpitch2)
︸ ︷︷ ︸

σtransl








(3.15)

δ̂roll = δroll + SAMPLE (α7 · δroll)
︸ ︷︷ ︸

σroll

(3.16)

δ̂pitch2 = δpitch2 + SAMPLE (α8 · δpitch2)
︸ ︷︷ ︸

σpitch2

(3.17)

δ̂yaw2 =δyaw2+

SAMPLE (α9 · δyaw2 + α10 · δtransl)
︸ ︷︷ ︸

σyaw2

(3.18)
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In case an extended odometer is not available, the expected value will

of course be null, and we can use an a priori standard deviation value

for each parameter, determined on the basis of the expectations on the

change that the terrain can induce in each degree of freedom. Of course

this option implies a larger uncertainty, which in turn requires a larger

computational effort.

3.1.3 Model thresholds

The model exploits a few parameters, i.e., thresholds, in order to handle

some situations.

Minimum thresholds

As it can be noticed in the relationships above, and similarly to what is

done in [3, Sect 5.4], the standard deviations of the uncertainties are pro-

portional to the amount of motion involved into each step. Whenever the

motion is too small, the standard deviation gets underestimated. These

thresholds are used in such cases; they guarantee a minimum dispersion

of the sampled data, which is necessary to correctly represent the real

uncertainty.

Maximum thresholds

These thresholds have been introduced in order to handle situations where

the extended odometer does not give out values in 6DoF, i.e., when there

is no IMU on the vehicle. Maximum thresholds represent the maximum

a priori uncertainty, which should always lead to a larger estimate of

robot movements with respect to the more concentrated one obtained

when using inertial information. The σmax value that is associated to ev-

ery model parameter needs to be suitably large so to ensure that samples

can be generated with enough dispersion about the mean value, in or-

der to represent all possible changes on the given degree of freedom. In

the experiments presented in Section 3.1.5 the values of these thresholds

were chosen considering a maximum vehicle speed of 7 m/s and a 20Hz

sampling frequency for the odometer.

3.1.4 Comparison with a baseline motion model

In order to clarify the relevance of a careful design of the motion model,

a comparison between the proposed model and a baseline method is pre-
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Figure 3.6: The naı̈ve motion model decomposition and its parameters. A displacement

is expressed in terms of an initial rotation about the axisN1, a translation along the new

X axis, and a final rotation about the axis N2.

sented. The latter stems from a direct derivation of the 2D-3DoF model

presented in [3, Sect 5.4]. This model is based on dividing the displace-

ment into 3 steps only, as shown in Figure 3.6:

1. Rotation δrot1 , a rotation about an axis N1. To obtain N1, let us call

D the vector (positiont − position(t−1)). N1 is the vector product

of the X axis of frame pose(t−1) and D.

N1 = (positiont − position(t−1))×Xpose(t−1)
(3.19)

2. Translation δtransl, a translation along the X axis of the frame ob-

tained after the previous step, i.e., after the rotation of poset−1 by

δrot1 . At the end the origin will reach positiont.

3. Rotation δrot2 , a rotation about an axis N2. N2 is the vector product

of the X axis of frame poset and D.

N2 = (positiont − position(t−1))×Xposet (3.20)

This rotation aligns the reference frame, which has been obtained

rotating pose(t−1) by δrot1 and then translating it by δtransl, to finally

obtain orientationt.

The uncertainty on the components of the motion model is sampled

from normal distributions, for each of the 3 parameters δrot1 , δtransl,
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Figure 3.7: The 3D banana-shaped box representing the 3σ volume where the particles

of a Monte Carlo Localization system may spread as a result of applying Gaussian

noise to each of the 3 basic movements that describe a displacement with the naı̈ve

motion model.

and δrot2 . Such distributions have zero-mean and standard deviations

computed similarly to what has been done for the motion model in [3,

Sect 5.4]. It is just a similarity, because of the need to introduce other

degrees of freedom to the uncertainty affecting positiont, which would

be just 2 (δrot1 , and δtransl) for a 3D point. From here the decision of

adding noise to the vector N1 since, if it would have been added to the

vectorD, it would have led to the model proposed above. Notice that the

2 parameters of N1 are not independent w.r.t. the uncertainty of rotating

about N1, so the DoF count for positiont is correct.

This naı̈ve model, which turned out not being well performing, demon-

strates how heavily the decomposition of the overall displacement, i.e.,

the motion model, affects the capability to produce realistic poses. Ac-

tually, the poses generated by this model are not realistically distributed

about the real pose, see Figure 3.7 and Figure 3.8, where it can be ob-

served that the uncertainty is badly rotated along the X axis; the larger

∆z, the more rotated the particle cloud. Figure 3.9 shows the corre-

sponding uncertainty for the proposed motion model.

3.1.5 Experimental Results

Tests of the software implementation of the proposed motion model have

been performed on the real world application presented in Chapter 6.

The experimental settings include the parking area of the U5 building of

the University of Milano - Bicocca. Figures 3.10 and 3.11 show a 3D
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Figure 3.8: 3D view of the particle set for the naı̈ve motion model. Notice that the

larger the overall ∆yaw and ∆z, the larger the distortion of the particle set.

Figure 3.9: 3D view of the particle set for the proposed motion model. Notice the

absence of the distortion that is affecting the particle set presented in Figure 3.8
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Figure 3.10: Voxel representation of the U5 building underground parking. Here is

shown the part that includes the ramp leading to the outdoor parking lot: pose n. 8 is at

the gate of the underground parking, pose n. 4 is in the outdoor parking nearby where

the autonomous car (golf cart) is depicted in Figure 3.12, poses n. 3 and 5 are on the

ramp, poses n. 1, 2, 6, 7 are in the planar road leading to the ramp.

voxel map and an aerial picture of the parking lot, respectively.

The motion model has been plugged into a state of the art Monte

Carlo Localization software [121]. The tests were performed in this or-

der: first a verification that the localization was correct was performed

when moving on an almost planar surface, i.e., the model was perform-

ing at least as the state of the art 2D-3DoF model. This has been done

in the underground parking of the building, where the floor appears to

be reasonably planar. Indeed, the localization results were perfectly

comparable to the ones obtained with the 2D-3DoF state of the art soft-

ware [121]. Secondly, the cart was driven along a path including the

ramp leading to the outdoor parking area, as shown in Figures 3.13. Also

in these cases the localization was successful, as demonstrates the exam-

ple shown in Figure 3.14. As there was no possibility of acquiring the

ground truth of the robot poses along the path, the correctness of the lo-

calization was proved by checking that at the end of the path, at about

pose n. 8 in Figure 3.10, the estimated pose was matching the real one.

In the same experiments, the naı̈ve motion model proved its limita-
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Figure 3.11: U5 building - Aerial view, the ramp from the underground garage can be

noticed on the left of the largest tree.

Figure 3.12: The ramp from the underground garage to the outdoor park, picture taken

from the outdoor park.
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Figure 3.13: Snapshots along the path shown in Figure 3.10 from the underground

garage, through the ramp, to the outdoor parking lot and back into the underground

garage; 1) top to 8) bottom. Notice in 1), 3), 7) and 8) the cart reference frame, shown

in the same map used by the software. In 3) notice the frame pitching up along the

ramp.

tions and failed in high curvature curves, as it might be expected from

observing, in Figure 3.7, the unrealistic uncertainty generated by this

model; an example of failure of the naı̈ve motion model is shown in

Figure 3.15.

Despite roll and pitch data were available, thanks to an MTi X-sens

IMU sensor, they proved to be pretty noisy and, as a result, the experi-

mental activity verified that using only the available LIDAR sensors, al-

together with appropriate minimum and maximum thresholds, sufficed

for a correct localization. This statement holds when both types of LI-

DAR models available on the golf cart (Sick LMS111 and LDMRS4001)

were used for localization. This proved that measuring the surrounding

environment on different scanning planes, together with a motion model

capable of modeling the full 6DoF dynamics of a rigid body, allows for

robust localization within a 3D map.

Conclusions

This work led to the publication in [122] and presents a motion model for

full 3D-6DoF localization, showing that a careful design is required to

obtain a realistic representation of the involved uncertainties and of their

influence on the posterior uncertainty distribution of the robot pose. The
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Figure 3.14: The green path represents the odometric path; the red path represents the

localization obtained using the proposed motion model. Notice at 1) i.e., nearby pose

n. 8, the correctness of the localization.

Figure 3.15: An experiment with the naı̈ve motion model: in 2) the localization sys-

tem could luckily recover from a localization error, while in 1) it failed and could not

recover.
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Figure 3.16: An example of the localization system running in the U5 underground

parking lot. Please note the presence of many non-map elements observed by the laser

scans, in this case parked cars and bikes.

Figure 3.17: The scanning planes of the LDMRS-4001 Sick laser scanner.
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presented model demonstrated its suitability in different real and simu-

lated experiments and is currently in use on the robotic agents involved

in the research activities for urban autonomous driving.
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3.2 Lie algebra camera localization

This projects tackles the problem of single camera localization for a

monocular 6DoF-moving observer, given a 3D visual map. While not

innovative from the approach point of view, this project aims at the

developing of an efficient implementation exploiting Lie algebra based

camera tracking, to be deployed in compliance with the standards of the

Robot Operating System (ROS). Such a work is in fact missing from the

wide palette of ROS implementations of state-of-the-art approaches and

it is the author’s belief that its availability could bring advantage to the

robotic community. For the mapping part, publicly available software is

used.

3.2.1 Proposed approach

This project follows the PTAM [30] intuition of keeping the mapping

and the camera tracking tasks separate. A non-real-time thread is in

charge of performing global bundle adjustment to generate a globally

consistent map, while the camera tracking is performed in real-time by

locally refining its position, with respect to the map, exploiting Lie alge-

bra optimization.

For the mapping part, the effective implementation in VisualSfM

[123] was chosen, which combines Multicore Bundle Adjustment [36]

and SiftGPU [40]. As in [30], VisualSfM is fed with a small subset of

key-frames in order to keep the computation time within the real-time

boundaries. The resulting map is thus constant between key-frames and

is exploited for camera localization. In fact, this choice of exploiting a

global SfM approach for mapping introduces an improvement over the

approach proposed in [30], since it allows to overcome the delicate ini-

tialization complications present in [30].

For the camera tracking part, the key idea is to refine the estimate

of the camera pose with respect to the 3D visual map by minimizing

an error function based on the reprojection error of the map features in

the image plane. The authors of [30] suggest to exploit the nice local

properties of the Lie algebra se(3) associated with the SE(3) manifold

representing the group of rigid body motions. In particular, the fact that

the se(3) algebra represents the tangent space at the identity for SE(3) is

leveraged to efficiently compute partial derivatives of the error function

to be minimized with respect to the camera pose parameters. While
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only holding for small camera motions, due to its nature of first order

approximation of SE(3), the se(3) algebra based minimization proved

its effectiveness in the experimental activity, in both code simplicity and

speed-up of the computation time.

The Special Euclidean Group SE(3) and the associated se(3) algebra

The Special Euclidean Group SE(3) is the group of rigid transformations

on R
3, defined as the set of mappings g : R3 → R

3 of the form g(x) =

Rx+T and can be identified with the space of 4×4 matrices of the form

g =

[
R T

01×3 1

]

It is in fact a Lie group, i.e. a group that is also a differentiable man-

ifold and it is six dimensional. Its tangent space se(3) is closed under

the Lie bracket, making it a proper algebraic structure. se(3) is known

as the Lie algebra of SE(3) and represents its linearized version, i.e. its

infinitesimal group. An elements x ∈ se(3) can be expressed in the form

x =

[
[ω]× v

01×3 0

]

where the operator [ω]× maps a 3-vector ω into a 3× 3 matrix of the

form

[ω]× =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





To map elements of SE(3) into se(3) and vice versa, the matrix loga-

rithm and the exponential map are used, respectively.

Please refer to Appendix A for a thorough tractation of Lie groups

and Lie algebras.

3.2.2 Camera tracking

The main goal of a camera tracking system is to estimate the camera

poses with respect to a known visual map. In absence of any proprio-

ceptive sensor, the only information that can be measured is the location

discrepancy between the map elements projected into the image planes

(according to the potentially wrong camera pose estimations) and the
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visual features extracted from the images themselves. Therefore, min-

imizing the specific error function that describes this discrepancy, with

respect to the camera pose parameters, allows to refine the estimation of

where the observer was located within the visual map at each time step.

Let

(
u

v

)

= Pr(RtcwP
w)

be the projection into a pinhole camera of a point Pw (expressed in

world, i.e. map, coordinates), after being roto-translated to camera co-

ordinates by means of the roto-translation matrix Rtcw, thus becoming

P c. Now, let us decompose Rtcw into a fixed Rt′c0w (representing the roto-

translation between world coordinates and camera coordinates at time

0) and a variable M, representing the camera motion with respect to the

camera at time 0. As stated in Section 3.2.1, M is part of the SE(3) group

and can be expressed in terms of a 6-vector µ = (ω1×3, v1×3)
T by means

of the exponential map, so as to obtain

P c = RtcwP
w = MRt′c0w Pw = exp(µ)Rt′c0w Pw

and

(
u

v

)

= Pr(exp(µ)Rt′c0w Pw) (3.21)

Please refer to Appendix A for the explanation of how to compute

partial derivatives of exp(µ) with respect to µ. It is in fact a trivial dif-

ferentiation and can be efficiently written in closed form.

Now, let us properly define the error function. As stated above, there

will be the pure measurements z directly extracted from the image by

means of a feature detector, and there will be the expected measurements

ẑ, generated by the map 3D points projected onto the image plane. After

performing proper data association between z and ẑ, a set of matched

couples (zk, ẑk) will be available, where ẑk can be written in terms of

Equation 3.21.

The reprojection error function for a single point takes the form

Ek(µ) = zk − ẑk

= zk − Pr(exp(µ)Rt′c0w Pw
k )

(3.22)
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Figure 3.18: Convergence process of the camera tracking system in simulated envi-

ronment without noise: starting condition. The 3D viewport on the right shows the

3D space with 500 randomly generated map points, the starting estimate of the camera

pose (thin reference frame) and the correct camera pose (thick reference frame). The

smaller, foreground window in the top left corner shows the image plane (thin black

frame) and the reprojected 3D points according to the estimated (blue circles) and cor-

rect (red stars) camera pose. The starting pose is evidently misplaced as the estimated

reprojected map points not only do not stay nearby the corresponding ones, but also

stay outside the boundaries of the image itself.

The complete error function we want to minimize is squared sum of

the single points errors

E(µ) =
∑

k

(zk − ẑk)
2

=
∑

k

(zk − Pr(exp(µ)Rt′c0w Pw
k ))

(3.23)

Differentiating Equation 3.23 with respect to the parameter vector µ

allows us to iteratively refine the estimation of µ by means of a standard

function minimization method, such as, e.g. Gauss-Newton or Leven-

berg–Marquardt.

3.2.3 Experimental results

The experimental activity was performed in a simulated environment,

for which a Matlab prototype was implemented and synthetic data were
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Figure 3.19: Convergence process of the camera tracking system in simulated envi-

ronment without noise: evolution of the minimization. The 3D viewport on the right

shows the 3D space with 500 randomly generated map points, the estimated camera

poses (thin reference frames) at each minimization step and the correct camera pose

(thick reference frame). The smaller, foreground window in the top left corner shows

the image plane (thin black frame) and the reprojected 3D points according to the es-

timated (blue circles) and correct (red stars) camera pose. Note how the minimization

process converged to the true camera pose estimate, despite the substantially wrong

initial guess.
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elaborated. The implementation consists of three different approaches

that differ in the way the jacobians are calculated:

• Lie algebra based derivatives, i.e. elements of the se(3) algebraic

structure. Exploiting local properties of smooth manifolds, partial

derivatives of the reprojection error function can be easily written

in a very short form, with 16 terms per each of the two rows of the

jacobian (see Equation A.8).

• Lie algebra symbolic derivatives. The parameter vectors to be min-

imized are still elements of the se(3) algebraic structure, but the

partial derivatives of Equation 3.23 are calculated with the Matlab

symbolic toolbox. The resulting code is huge, about 8K terms per

each of the two rows of the jacobian, which must in turn be evalu-

ated for each 3D point of the map.

• Standard camera pose minimization, using symbolic partial deriva-

tives of SE(3) roto-translation matrices. The resulting code is pretty

long, about 200 terms per each of the two rows of the jacobian.

Minimization is performed in all the three cases by means of the clas-

sical Gauss-Newton algorithm (Levenberg–Marquardt was also tested

but the modest gain with respect to Gauss-Newton does not justify the

slightly more complicated formulation). Figures 3.18 and 3.19 show ex-

amples of the running code. Tables 3.1, 3.2 and 3.3 and Figures 3.20, 3.22

and 3.21 show the differences in computation time per minimization

step, computation time for convergence and number of iterations, as the

number of map elements grows, of the minimization process when using

the three approaches mentioned above. As it can be seen, the compact-

ness of the Lie algebra based derivatives leads to a substantial gain in

computation time per each iteration (almost one order of magnitude).

The main drawback is that the Lie algebra based minimization approach

needs a higher number of iterations to achieve the same final accuracy.

This leads to a smaller gain in the total computation time for conver-

gence, although approaches like [30] overcome this problem by assum-

ing that the initial guess is not far from the correct one and thus limit the

number of iteration to a lower, fixed number.

3.2.4 Conclusions

The work presented in this section demonstrates that, by exploiting lo-

cal properties of the SE(3) manifold and its associated se(3) Lie alge-
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Map Iter. Time Time Mean Time Std. Dev. Iter. Mean Iter. Std. Dev.

10 0.000161 0.003980 0.000216 24.73 0.47

20 0.000166 0.004104 0.000109 24.79 0.41

50 0.000176 0.004390 0.000111 24.93 0.26

100 0.000190 0.004743 0.000102 24.99 0.1

200 0.000220 0.005491 0.000114 25 0

500 0.000310 0.007751 0.000168 25 0

1000 0.000674 0.016846 0.003625 25 0

Table 3.1: Lie algebra based derivatives, i.e. elements of the se(3) algebraic struc-

ture. The columns represent, from left to right: the number of 3D features in the map,

the mean time in seconds per each iteration, the mean and standard deviation of both

the computation time (seconds) and number of iterations necessary for convergence,

computed over 100 randomized runs.

Map Iter. Time Time Mean Time Std. Dev. Iter. Mean Iter. Std. Dev.

10 0.004872 0.068059 0.001196 13.97 0.22

20 0.004902 0.068727 0.001053 14.02 0.14

50 0.004953 0.069342 0.001215 14 0

100 0.004914 0.068789 0.000464 14 0

200 0.005012 0.070163 0.000521 14 0

500 0.005212 0.072967 0.000797 14 0

1000 0.006332 0.088653 0.005679 14 0

Table 3.2: Lie algebra symbolic derivatives. The columns represent, from left to right:

the number of 3D features in the map, the mean time in seconds per each iteration, the

mean and standard deviation of both the computation time (seconds) and number of

iterations necessary for convergence, computed over 100 randomized runs.

Map Iter. Time Time Mean Time Std. Dev. Iter. Mean Iter. Std. Dev.

10 0.001065 0.008040 0.000559 7.55 0.5

20 0.001085 0.008226 0.000570 7.58 0.5

50 0.001102 0.008440 0.000526 7.66 0.48

100 0.001113 0.008661 0.000478 7.78 0.42

200 0.001184 0.009369 0.000367 7.91 0.29

500 0.001338 0.010701 0.000241 8 0

1000 0.002270 0.018160 0.003498 8 0

Table 3.3: Standard symbolic partial derivatives of SE(3) roto-translation matrices. The

columns represent, from left to right: the number of 3D features in the map, the mean

time in seconds per each iteration, the mean and standard deviation of both the com-

putation time (seconds) and number of iterations necessary for convergence, computed

over 100 randomized runs.
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Figure 3.20: Graphical comparison of the minimization process execution time, as the

number of map elements grows, using se(3) fashion derivatives and SE(3) standard

symbolic derivatives. The mean and standard deviation are computed over 100 runs.

Figure 3.21: Graphical comparison of the minimization process execution time, as the

number of map elements grows, using se(3) fashion derivatives and SE(3) standard

symbolic derivatives. The mean and standard deviation are computed over 100 runs.
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Figure 3.22: Graphical comparison of the minimization process execution time, as the

number of map elements grows, using se(3) fashion derivatives and SE(3) standard

symbolic derivatives. The mean and standard deviation are computed over 100 runs.

bra, a very efficient estimation of the camera pose with respect to a 3D

visual map can be performed. In particular, the speed-up in computa-

tion time and code simplicity is shown when comparing the Lie algebra

implementation and the traditional way of calculating symbolic partial

derivatives of the reprojection error with respect to the roto-translation

parameters.

3.3 Summary

The topics presented in this chapter can be summarized as follows:

• Autonomous robots require a reliable Self-Localization module in

order to efficiently perform assigned tasks.

• Self-Localization can be performed using pure proprioceptive sen-

sors (dead reckoning), although the quality of the localization quickly

degrades, because of the integration of small errors over time.

• Self-Localization can be performed very efficiently processing in-

formations generated by exteroceptive sensors like cameras and

laser scanners.

• When poorly or ambiguously featured informations are used (typ-

ical laser scanner based approaches), an accurate motion model of
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the robot’s dynamics is of crucial importance for the success of the

localization process.

• When a 3D visual map is available, extremely efficient camera lo-

calization can be performed by exploiting the local properties of

the SE(3) manifold and its associated se(3) Lie algebra.
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Chapter 4

Object detection and tracking

In this chapter I will present the work on object detection and tracking

that led to the publication of Scale-Independent Object Detection with an

Implicit Shape Model (SIODISM) [124] and the follow up work carried

on by the master students Prisciantelli and Ventimiglia, BISMD [125]

and BMTT [126], under my supervision.

4.1 Scale-Independent Object Detection with an Implicit

Shape Model

4.1.1 Introduction

In the last years object detection and tracking could afford dealing with

realistic, i.e., challenging, conditions thanks to the advancements in com-

puter vision research. The object-detection task consists of the process

of localizing and determining the class of specific objects in an image.

Humans can perform this task easily, even if the objects appear rotated,

scaled or partially occluded. To reach a human level ability is still an

unsolved issue for state-of-the-art computer vision systems.

Usually, object detection algorithms (and humans too) cannot guar-

antee that the resulting interpretation of the image is the correct one.

Therefore it is advisable to accumulate evidence over time, which im-

plies coupled classification and tracking. We believe to be preferable

to generate different interpretation hypotheses and then to choose those

that better explain the actual observations of the world. In our think-

ing, the different interpretation hypotheses should be characterized and

compared in a probabilistic framework. The idea of probabilistic mul-
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tiple hypotheses classification and tracking dates back to the early 90’

and has been further developed over the years. The approach that best

matches our objectives is the one in [127, 128].

In [124] we propose an improvement to the Implicit Shape Model

(ISM) (see Section 2.2) based robust object detection system proposed

by Leibe et al. [129]. Object detection with ISM allows to approach the

classification and tracking problem in a probabilistic way with multiple

hypotheses. Unlike the original approach, our method is independent

from object scale in the training sets, and this allows to work with much

smaller training sets and also to avoid to supply information about scale

to the trainer. This is done while maintaining the robustness of the orig-

inal approach. Leibe et al. mentioned a potential solution to overcome

the scale problem in the training set, i.e., the usage of the scale produced

by the local descriptor. Our proposal is different: since the scale mea-

sure generated by local descriptors is in general subject to noise, we try

to walk around this noise by estimating the scale measure only from the

evidence collected in the image.

In the view of integrating the output of an object detector in a recog-

nition and tracking system, we need to express the detector output in the

form of a probability distribution. The approach proposed by Liebe and

Schiele has the relevant peculiarity that the detection output is a set of

hypotheses on the size, pose, and class of one or more objects. Their

approach can also be easily modified to accommodate a pixel level seg-

mentation. This means that the detector will be able to output, for each

object, a pixel map where, for each pixel, the probability of that pixel

being part of the object (or being part of the background) is available.

The usage of such method in a probabilistic framework for classification

and tracking allows to generate 3D hypotheses (by means of camera-

to-world projection) and to select the best interpretation of the image,

provided some constraints are satisfied like, e.g., a pixel not being asso-

ciated to two objects, etc. This in turn allows the classifier and tracking

system to handle realistic partial object occlusions.

In Section 4.1.2 the original formalization of the Implicit Shape Model

is presented. In Section 4.1.3 we focus on the codebook creation, and

in Section 4.1.4 we review the original object detection system. In

Section 4.1.5 the proposed method for scale-independence is presented,

while in Section 4.1.6 we present some results of our system.
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4.1.2 The Implicit Shape Model formalization

The approach proposed in [66], developed in [67] and extended in [68]

rely on an implicit description of the objects. Thanks to this characteris-

tic there is no more need for an explicit description which, as seen in the

previous section, requires large training sets and complicated description

models. This approach, on the other hand, builds its knowledge base,

called codebook, by collecting description and spatial evidence from the

training images.

This is performed by computing some local descriptors like, e.g.

SIFT or Shape Context, on interest regions automatically extracted from

the images. This information, in conjunction with the spatial coordinates

of the interest regions, is stored in the codebook and used later at detec-

tion time. Thus we collect information about the object in areas which

provide more details to the object description.

Formally, an Implicit Shape Model ISM(C) = (IC , PI,C) for a given

object category C consists of a knowledge base IC (codebook), built-up

with local descriptors discriminative for the object class, and of a spa-

tial distribution PI,C that indicates where each codebook entry may be

found on the training object [67]. There are two requirements for the

spatial distribution PI,C . First, such distribution should be defined in-

dependently for each codebook entry, thus making the approach flexible

and capable to merge, at detection time, parts of objects observed on

different training images. Second, this distribution should be computed

in a non-parametric way, thus emulating the real distribution as in de-

tail as the training objects permit, or, in other words, exploiting as much

training informations as possible. Furthermore this requirement frees us

from making Gaussian assumption on the spatial distribution.

4.1.3 Codebook creation

In the approach presented in [68] the codebook is filled with N entries,

each one representing some evidence extracted from the training images.

For each type of descriptor (named cue) we build a separate codebook.

Each entry of each codebook should contain informations about its own

relative position with respect to the object center, the values of the as-

sociated local descriptor calculated on the image patch that generated

that entry, a segmentation mask figure/background, the parameters of

the ellipsis that includes the image patch, the object scale and the list of

possible object centers for which this entry may cast votes. As will be
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Figure 4.1: Structure of the codebook and its entries. (A) represents the segmentation

mask, (B) contains the parameters of the ellipsis which includes the image patch, (C)

the values of the associated local descriptor calculated on the image patch, (D) the

informations about the relative patch position with respect to object center, (E) lists all

possible image centers for which this patch may cast votes.

shown in Section 4.1.5, the approach proposed in this chapter is inde-

pendent from the object scale, so that this information will be omitted.

In Fig. 4.1 the structure of the codebook and its entries are shown.

The procedure of codebook creation is divided in two parts. First

we analyze the training images and populate the codebook with entries

containing information about interest regions in the image. Second we

compare, calculating the Euclidean distance in the space of descriptor

values, all codebook entries with each other. In each couple that results

sufficiently similar, its entries mutually enrich each other’s spatial infor-

mation. This makes it possible for a codebook entry to vote, at detection

time, for more than one object center.

The first phase, i.e., the analysis of the training image, is performed

in the following steps:

• We extract the most interesting image areas using one or more au-

tomatic interest region detectors. These algorithms ground on func-

tions such as Harris function, Hessian determinant, etc. in order to

extract scale invariant regions of interest from an image. An interest

region is a small image portion whose content is highly descriptive

(high edgeness, cornerness, etc.), that can be used for discrimina-

tive purposes, in conjunction with some local descriptors.



4.1. Scale-Independent Object Detection with an Implicit Shape Model 55

• We calculate the values of local descriptors on interest regions.

Each descriptor is composed by a different number of values, thus

the codebook structure need to be sufficiently flexible in order to

contain different descriptors. Local descriptors extract some kind

of “fingerprint” of an image region, which are typically scale and

rotation invariant. Some example of local descriptors are SIFT,

PCA-SIFT, Shape Context, etc [130]. In our implementation we

tested both SIFT and Shape Context descriptors.

• Finally we save in the codebook, for each interest region, the pa-

rameters of the ellipse, the spatial information (i.e. the distance of

the interest region to the training object’s center), the values of the

local descriptor and the local segmentation mask (extracted from

the global segmentation mask supplied in the training set.

In the second part of the codebook creation we compare all codebook

entries with each other. The aim of this procedure is to enforce the gen-

eration of object hypotheses and their segmentation during detection and

to enable single image patches to vote for more than one object center.

The similitude measurement is calculated as the Euclidean distance in

the M-dimensional space of descriptor values:

d(Pi, Pj) =

√
√
√
√

M∑

k=1

(
P k
i − P k

j

)2
(4.1)

If the distance between two entries is under an acceptance threshold,

we say that their domain of discrimination is similar, thus we enable both

entries to cast votes, at detection time, for their own center and for the

center of the other entry.

This step concludes the codebook creation procedure.

4.1.4 Object detection

Image analysis

The image analysis procedure is similar to the one described in the code-

book creation section. Applying several region detection algorithms on

the image we are able to extract some interesting areas (in the following

these areas will be called patches). For each patch we compute different

values obtained by computing different region descriptors. These values

will be stored for the following operations.
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Next, the set of extracted image patches will be compared with all

the codebook entries. For each pair patch-entry an Euclidean distance in

the space of descriptor values is computed. If the distance is less than

an a-priori threshold (the same used in the codebook creation procedure)

then the patch will be associated to the codebook entry.

The original approach for voting

The original approach proposed by Leibe et al. in [68] bases on the

equation that describes the probability that an object is located in a par-

ticular position with a specific scale, given the evidence, the position of

the patch, and its descriptor.

p(on, λ|e, l, q) =
∑

i

p(on, λ|C
q
i , l, q)p(C

q
i |e) (4.2)

The purpose of this section is to define a practical meaning for the

components of this equation.

• The probability p(on, λ|C
q
i , l, q) represents the strength with which

the patch votes for the object center (λ). It is inversely proportional

to the number of possible interpretations of the patch. This formu-

lation comes from the intuitive idea that the more interpretations a

patch has, the more its vote will be unreliable. For example, if a

patch representing a car wheel matches in the codebook with both

car wheel entries and hood entries, then it will be not discriminative

to univocally identify the car center. For this reason the center will

have a low probability p(on, λ|C
q
i , l, q).

• p(Cq
i |e) represents the probability for the patch being correctly ex-

plained by a codebook entry C
q
i . The intuitive meaning is the fol-

lowing. Given a pair patch-entry, the perfect explanation of the

patch generates a vote for the exact center of the object. Since

an entry generally votes for more than one center, the probability

of obtaining the correct explanation of the patch decreases when

this number increases. Therefore, we can represent the probability

p(Cq
i |e) as the inverse of the number of centers voted by the C

q
i

entry.

Finally, the p(on, λ|C
q
i , l, q)p(C

q
i |e) term represents the strength of

the vote of each patch.
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4.1.5 Proposed method

In the approach described above each image patch can cast votes for

some object centers as point coordinates. This implies that a single vote

represents a possible object center at that location and at that scale, thus

requiring the scale information generated by local descriptors. Since

this information is often subject to noise, we try to walk around it by

estimating the object scale only from the spatial distribution of the im-

age patches detected. Furthermore, we want the voting procedure to be

independent from the object scale. Such a result would allow to operate

with a much smaller training sets, since the many images of the same

objects at different scales would not be necessary any more. Smaller

training sets and, thus, smaller codebooks, noticeably reduce computa-

tional costs when comparing image patches to codebook entries, since

each patch needs to be compared with all entries.

In our approach each patch will no longer vote for a point as the cen-

ter of the object. Instead, a half straight line will be drawn in the voting

space, starting from patch center and going towards the hypothesized

object center. Since the region descriptors are scale-invariant, the same

object detail should generate similar descriptor values even if scaled or

rotated. Thus we save, at training time, the information about the direc-

tion of the object center with respect to the patch position in the training

image. This information is used at detection time to specify the direc-

tion where the relative position of the trained object center, with respect

to the matched patch, can be found. In Fig. 4.2 we show the difference

between the original method and ours. The strength of each vote, as de-

scribed above, is given by the product p(on, λ|C
q
i , l, q)p(C

q
i |e). As sug-

gested in [68], the procedure for extracting local maxima is performed

by the mean shift mode estimator technique.

4.1.6 Results

In order to show that our system is capable to detect objects at different

scales, regardless of object scale in the training sets, we trained a code-

book with only one training image and run the detection system both on

the original image, and a set of scaled copies of the same. In Fig. 4.3

we can see one example of this experiment, where a scaled copy of the

original training object is detected without any loss of precision. Please

note how the interest regions, extracted by the automatic interest region

finders, are quite different in the two images.
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Figure 4.2: In this figure we show the difference between the original (top-left) and

our (top-center) approach. Note that in the former each image patch casts a vote for

the object center; in the latter each patch casts a votes for a line on which the object

center may be found. The result of the proposed method is a voting space like the one

shown in the top-right image. The lower three images show another example with the

original image (bottom-left), the rough voting space (bottom-left) and the same space

after some image processing (mainly Gaussian blurring) for the enhancement of the

local maxima (bottom-right).

Figure 4.3: In this figure we show an example of the independency of our approach

from the scale of the training objects. Please note that the interest regions, extracted by

the interest region finders, are quite different in the two images.
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Figure 4.4: The images used as training set.

We need also to demonstrate that our system is capable to detect ob-

jects in cluttered scenes and under difficult lighting, at a level at least

comparable with the one of the original proposal. Out of the many exper-

iments performed, we selected the ones concerning people. The code-

books for these experiments were generated from the 5 images presented

in Fig. 4.4. The results are from images from other datasets. Fig. 4.5

presents some results for images from the RAWSEEDS datasets, which

have been collected by a mobile robot in both indoor and outdoor con-

ditions; they are freely available on the web, see [131]. The 5 training

images were also taken from RAWSEEDS project ones. The results in

Fig. 4.6 are from datasets from the VISOR repository, also freely avail-

able on the web, see [132]. The same codebook, trained without any

particular attention on the images in Fig. 4.4, was used for the images

from VISOR.

Note that the number of images in the training set is much smaller
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Figure 4.5: Some results achieved by the detection system on images from the

RAWSEEDS project.

Figure 4.6: Some results achieved by the detection system on images from the VISOR

datasets.
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Figure 4.7: Some mistakes of the detection system: (left) a false positive; (right) a false

negative, notice that the person detected is seating, a situation missing from the training

set.

than in the training sets used by Leibe et al. (typically more than 200),

see e.g., [128]. Furthermore, the training sets only consist of training

images and their segmentation masks, without any information about

object scale.

In Fig. 4.7 we show some mistake of the system. We also collected

statistics about one VISOR dataset 1. The dataset includes 1901 images,

we processed one image every 20, but many of them did not include any

person. In total we had 58 images including at least one person. The

processed images were then annotated for groundtruth in order to col-

lect the number of false positives and negatives. The results on a total

number of 67 person observed in the 58 processed images are: 37 cor-

rect detections of the person; 4 ”pure” false positives, i.e., the detection

of a non-existent person when another person, correctly detected, was

in the image; 11 ”pure” false negatives, i.e., missed detection; 19 false

positives with a false negative beside, i.e., an error in the localization of

the person. Some explanation is in order for these mistakes: the camera

parameters were not available and we used the parameters of the cam-

era used in the RAWSEEDS dataset, see e.g., Fig. 4.8. Therefore these

19 errors are more the consequence of the un-accuracy of the camera

calibration than of the un-accuracy of the detector.

4.1.7 Conclusions

This chapter proposes a substantial improvement to the ISM-based de-

tection system proposed by Leibe et al., e.g., in [68]. Unlike the original

approach, our method is independent from the object scale in the train-

1visor 1196179837385 movie11 viper.mpg
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Figure 4.8: An example of the localization error for the VISOR dataset, turning into

both a false negative and a false positive in the same image.

ing sets. This allows to work with much smaller training sets and to

avoid to supply information about scale and size to the trainer. This

has been done maintaining the robustness of the original approach. We

also showed preliminary results on challenging datasets. We are cur-

rently working on creating a large statistic from the output of our system

that will be used for comparison with other detection systems in a more

structured way (ROCs, efficiency, etc.). The qualitative evaluation per-

formed, in our opinion very satisfactory, showed that the percentage of

correct detections, for the tested category of objects (pedestrians), is very

high. False positives are quite rare. False negatives are primarily present

in low contrast scenes, where interest region finders achieve worst per-

formance. The size of the training sets (and, thus, of codebooks) are

notably smaller than the ones required by the original approach.

4.2 Follow-up research work

4.2.1 Improvements for object detection - BISMD

Here two main improvements, with respect to the object detection ap-

proach presented so far, are presented, one for the training and one for

the recognition phases.

Training

The codebook creation procedure described in Section 4.1.3 is divided

into two steps, the second one consisting in revisiting all the codebook

entries to mutually enrich similar ones. Experimental analysis pointed

out that the similarity function used for the matching during the revis-
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Figure 4.9: The spatial criterion for matching codebook entries during the enrichment

process.

iting phase, as described there, is subject to two main week points that

generate:

• Outliers due to histogram similarity of non-similar image patches.

E.g. car wheels matched with car windshield in presence of reflec-

tions on this latter one.

• Outliers stemming from geometric symmetries of the object. E.g.

front and rear car wheels, human limbs, etc.

These matching errors occur because the matching criterion is only

based on the Euclidean distance of the descriptor’s histograms. We pro-

pose to take into account also the spatial information of each image patch

relative to the object’s center. Thus, two codebook entries i and j will be

regarded as similar according to

i ≃ j ⇔ (‖di − dj‖ < Td) ∧ (|SpatialError| < Ts)

The first condition requires that the Euclidean distance between the

descriptors di and dj of the two codebook entries is below the threshold

Td, guaranteeing the appearance similarity (same as discussed in Sec-

tion 4.1.3). The second condition can be explained referring to Fig-

ure 4.9: when matching two entries i and j, we attach to the entry i a

spatial cone, which vertex is the object center, which axis connects the

vertex and the spatial position of the entry and which angle is the thresh-

old Ts. The entry j is said to be spatially compatible with the entry i, if

its location falls within the spatial cone of i.

This expedient allows to prune out wrong matching during the revisit-

ing phase of the codebook creation, thus preventing wrong or ambiguous

votes during the recognition stage.
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Figure 4.10: The main drawback of voting in terms of straight lines. Since lines prop-

agate indefinitely, undesired interferences of voting lines from different objects in the

image can generate strongly confident false positives.

Recognition

As discussed in Sections 4.1.4 and 4.1.5 both the original method pre-

sented in [68] and the method proposed in [124] rely on the Hough vot-

ing technique to convey the information from the single matched code-

book entries into a common probabilistic framework. While in [68] each

matched codebook entry casts votes for an object center in a 3D voting

space (x, y, scale), in [124] votes are expressed in terms of straight lines

starting from the matched image patch location and pointing towards the

learned object center. In this latter case, the voting space reduces to a 2D

one, since the scale information is embedded in the concept of “point-

ing towards”, as opposed to the concept of “at this point”. As discussed

in Section 4.1.5, voting for a direction allows to naturally recognize ob-

jects at different scales, even those that were not present in the training

set. However, also this approach has an important drawback, which is

shown in Figure 4.10. It is clear from the drawing that voting in terms of

straight lines inevitably leads to interferences between voting lines from

different objects in the image, thus likely generating false local maxima

in the voting space, i.e. false positive detections.

To overcome this important limitation of [124], here we propose to

change the voting procedure so as to lessen the probabilistic strength (i.e.

the intensity with which it is added to the voting space) of a voting line

as it relinquishes from the image patch that generated it. Formally, if the

line drawing procedure (Bresenham) is decomposed in its elementary

steps, each pixel of the line will be drawn with probabilistic strength

p(xk, yk) = CPr · p(xk−1, yk−1)

where k denotes the drawing step and CPr ∈ (0, 1] is the scaling
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Figure 4.11: Overcoming the main drawback of voting in terms of straight lines. The

probabilistic strength of a line decreases as it relinquishes the image patch that gener-

ated it. As a result, interferences between voting lines from different objects are most

unlikely to occur.

factor that determines the decaying speed of the voting line probability.

Figure 4.11 shows a comparison of the results when voting in terms of

probabilistically uniform lines or by adopting the probability-scaled ver-

sion proposed here. As it can be seen, the main drawback of [124] is

overcome in the right column, resulting in a much cleaner voting space

and in the absence of false positive detections.

Detection results

Preliminary results of extensive experimental activity are presented here.

The training set adopted for the car detector is the one used in [67],

shown in Figure 4.12. For a broader evaluation, several state-of-the-art

datasets are considered:

• TuGraz [133]

• Kitti [134]

• Karlsruhe [135]

• UIUC Multiscale [136]

• VOC motorbikes test2 [137]
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Figure 4.12: The training set used for training the car detector.

Figure 4.13: Some results achieved on the TuGraz datasets.

• Cow dataset [67]

Examples of recognition performances on these datasets are shown

in Figures 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18.

Also a video dataset (Vimodrone76) was acquired for tracking pur-

poses (Section 4.2.1), framing lateral car views. Figures 4.19 and 4.20

show the qualitative results on this dataset, comparing the original me-

thod (ISM [67]) and the two proposed in this chapter (SIODISM and

BISMD, respectively) in Figure 4.19 and, in Figure 4.20 SIODISM and

BISMD performances with and without applying the MDL criterion [67].

As it can be seen from the charts of these preliminary results, the BISMD

approach greatly improves over both ISM and SIODISM.
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Figure 4.14: Some results achieved on the Kitti datasets.

Figure 4.15: Some results achieved on the Karlsruhe datasets.



68 Chapter 4. Object detection and tracking

Figure 4.16: Some results achieved on the UIUC Multiscale datasets.

Figure 4.17: Some results achieved on bikes.
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Figure 4.18: Some results achieved on cows.

Figure 4.19: The RPC curve comparing ISM, SIODISM and BISMD on the Vimod-

rone76 dataset.
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Figure 4.20: The RPC curve comparing SIODISM and BISMD on the Vimodrone76

dataset, with and without applying the MDL criterion [67].

Object tracking

In order to test and prove its effectiveness, the BISMD approach pro-

posed in the previous section was used as detector for tracking objects

in image streams. The implemented object tracker (BMTT) is a multi-

target tracking algorithm inspired by [104], which instantiates a particle

filter for each tracked object. Observations used by the filters are prob-

abilistic combinations of BISMD object detections and adaptive model

on-line boosting classifiers [101]. In this way, each adaptive model is

trained on-line on a specific target and kept updated at each time frame,

based on the new image evidence. Figure 4.21 shows the main structure

of the BMTT multi-target tracker.

The results of the tracking on three datasets Vimodrone73, Vimod-

rone76 and Agrate Highway are shown in Figures 4.22 through 4.28.

Please note how the system is able to instantiate trackers also when ob-

jects appear in the middle of the scene, and that objects are successfully

tracked even in the case of partial or total occlusion.
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Figure 4.21: This Figure shows the interaction between the different modules of the

BMTT multi-target tracker.
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Figure 4.22: Tracking results on the dataset Vimodrone76.
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Figure 4.23: Tracking results on the dataset Vimodrone76.
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Figure 4.24: Tracking results on the dataset Vimodrone73.
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Figure 4.25: Tracking results on the dataset Agrate Highway.
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Figure 4.26: Tracking results on the dataset Agrate Highway.
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Figure 4.27: Tracking results on the dataset Agrate Highway.
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Figure 4.28: Tracking results on the dataset Agrate Highway.



Chapter 5

Indoor scene reconstruction

The main goal of the Scene Understanding problem is to reproduce the

human ability of inferring the global structures and situations of an ob-

served scene. Such ability could greatly improve performances of ap-

plications such as autonomous driving and human machine interaction.

This chapter will focus on understanding indoor scenes from video sen-

sors. Many works have been presented for indoor scene understanding,

yet few of them combine structural reasoning with full motion estimation

in a real-time oriented approach. In this work we address the problem

of estimating the 3D structural layout of complex and cluttered indoor

scenes from monocular video sequences, where the observer can freely

move in the surrounding space. An effective probabilistic formulation is

proposed, that allows to generate, evaluate and optimize layout hypothe-

ses by integrating new image evidence as the observer moves. Compared

to state-of-the-art work, this approach makes significantly less limiting

hypotheses about the scene and the observer (e.g., Manhattan world as-

sumption, known camera motion). Concomitantly, a new challenging

dataset is introduced along with an extensive experimental evaluation,

which demonstrates that the proposed formulation reaches near-real-

time computation time and outperforms state-of-the-art methods while

operating in significantly less constrained conditions.

5.1 Introduction

The indoor scene reconstruction problem has sparked lively interest in

the research community in the past few years. The ability to under-
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Figure 5.1: 3D scene layout estimation process. The video sequence is first processed

to obtain camera localization and sparse 3D point cloud reconstruction. Layout compo-

nents (e.g. floor, ceiling, walls) are generated from the sparse 3D points and combined

to generate layout hypotheses (see Section 5.2). Each layout hypothesis is evaluated

and optimized by incorporating new image evidence. The final 3D scene layout is

represented by the hypothesis that better describes the scene (see Section 5.3).

stand the structural geometry of living spaces allows, for example, au-

tonomous robots to safely move in the surrounding environment, as well

as the development of augmented reality applications. Many contribu-

tions have been proposed to either address the problem of recognizing

semantically meaningful components, such as floor or walls in 2D im-

ages, or the problem of generating sparse 3D point-cloud maps of the

observed scene while moving within it. By contrast, few works have

addressed the problem of reconstructing semantically consistent indoor

structures (also referred to as 3D scene layout, see Figure 5.1), and re-

fining layout hypotheses by integrating new evidence acquired as the

observer moves around. Among those that do, simplifications are made

to solve the problem, such as the Manhattan world assumption, partially

or fully known observer motion, and occasionally human intervention

for a correct initialization.

In this work we pursue a semantically consistent reconstruction of

the structural elements in indoor scenes, excluding any a priori knowl-

edge of the observer’s motion, human intervention, or hard Manhattan

constraints. We start by observing in our experiments that state-of-the-

art 3D reconstruction techniques, such as SLAM and SfM, are far from

achieving reliable results that can be directly translated to a higher se-
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mantic reconstruction. This phenomenon is particularly noticeable when

the observed scenes are highly cluttered and/or mostly featureless. We

therefore propose a probabilistic framework, to be fed with such noisy

elaborations, that allows us to efficiently integrate new evidence to gen-

erate, evaluate and refine 3D layout hypotheses as the observer moves

through the scene. Different types of information extracted from images

(points, lines, regions) and, potentially, from other kind of sensors, can

be easily merged into our probabilistic formulation, allowing us to cope

with both clutter and featureless surfaces.

We present extensive experimental results on challenging sequences,

demonstrating improvement over state-of-the-art approaches while op-

erating in significantly less constraining conditions and in near-real-time

(in the order of ∼20fps). We propose a new challenging dataset to prove

the full capacities of the proposed method and which is available for

future comparisons [138].

5.1.1 Contributions

In this work an efficient method for estimating 3D indoor layout from an

arbitrary 6DoF moving monocular observer is proposed, whose motion

is estimated using state-of-the-art techniques such as SLAM and key-

framed SfM. With respect to previous work, the approach presented here

introduces important improvements by:

• Eliminating the hard Manhattan world assumption.

• Requiring no a priori knowledge of the observer motion with re-

spect to the scene.

• Operating at near-real-time speeds (∼20fps).

• Introducing a new challenging dataset which features cluttered, non-

Manhattan and non-box-shaped scenes.

The reminder of this chapter is organized as follows. Section 5.2

presents an overview of the proposed approach, the probabilistic frame-

work is explained in Section 5.3, along with the details of the proposed

layout parameterization, the generation and evaluation of the layout hy-

potheses. Section 5.4 presents the extended experimental activity and a

thorough discussion of success and failure cases.
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5.2 Method Overview

This section describes the framework within which layout hypotheses

are generated, evaluated and updated or rejected. Figure 5.1 shows a

pictorial representation and a schematic diagram of the whole process.

Sparse 3D reconstruction. As the observer moves in the surrounding en-

vironment and the image stream is acquired, we first pre-process se-

quences with a localization and sparse 3D reconstruction algorithm. Since

the main contribution of this work is not related to the 3D reconstruction

problem, the proposed framework is designed so as to be able to work

with any algorithm that can provide a camera motion estimation as well

as a cloud of 3D points. In the experimental activity two such approaches

are compared: a real-time implementation of the Monocular V-SLAM

approach proposed in [22] and the non-real-time VisualSfM [36]. No-

tice that these 3D reconstructions are in general noisy and sparse (Fig-

ure 5.2(a)).

Hypotheses initialization. The second step consists of generating a higher

level representation of the 3D points estimated in the pre-processing

phase. Several types of geometrical primitives are suitable for this pur-

pose. In our case, we believe a piecewise planar representation is the

most appropriate for indoor scene representation. Thus a large num-

ber of planes is fitted to the 3D points so as to generate a large number

of (potentially inaccurate) candidates of layout components, i.e. walls,

floor, ceiling (Figure 5.2(b)). For the experiments an iterative RanSaC

plane fitting procedure was implemented, which is optimized for indoor

scenes by allowing peripheral fitted points to be re-injected in the itera-

tion process, since these points potentially lay on the intersection of two

planes.

Layout estimation. In the last step, which constitutes the core of the pro-

posed inference engine, layout hypotheses are generated as random com-

binations of candidate layout components (Figure 5.2(c)). Each layout

hypothesis is evaluated at each time frame by measuring its compatibil-

ity with observations (e.g. image points and lines) and geometrical con-

straints across frames. During this process, each layout is “perturbed”

(see Section 5.3.3) by locally adjusting, optimizing, merging or splitting

layout components. There are different approaches to manage sets of
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(a) (b) (c)

Figure 5.2: Left: a noisy sparse 3D reconstruction. Please note that when using Visual

SLAM techniques for 3D reconstruction, the amount of estimated 3D points is very

limited, typically not exceeding one or two hundreds of points. Center: a large number

of candidate layout components obtained with plane fitting. It is clear from the image

that fitting planes to 3D points inevitably produces a considerable amount of “wrong”

planes. Right: The process of generating layout hypotheses as random combinations

of candidate layout components (i.e planes).

hypotheses. In this work we choose to integrate the probabilistic frame-

work within a particle filter structure. This choice allows to explicitly

formulate the problem in a parallel-computing oriented fashion (parti-

cles are independent from each other), which can lead to high efficiency

gains in computation time. The output of the optimization procedure

is an estimation of the 3D scene layout, which is obtained by selecting

the layout hypothesis with the best set of layout components (see Sec-

tion 5.3).

Advantages. There are two important advantages stemming from the

choices mentioned above:

i) The local optimization step applied to each layout component helps

recovering from noisy initialization (see the transition from Fig-

ure 5.3(b) to Figure 5.3(c)) while keeping the computation amount

affordable for real-time applications. This could not be achieved

with standard “brute force hypothesize and test“ approaches, e.g.

[106, 110].

ii) The choice of embedding the proposed probabilistic formulation

within a particle filter also allows to exploit some critical proper-

ties of particle filters, like multi-modal posterior representation, re-

sampling, particle clustering and, most importantly, recover from

substantially wrong initializations (see, e.g. transition from Fig-

ure 5.3(c) to Figure 5.3(d)).
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(a) (b)

(c) (d)

Figure 5.3: From top-left to bottom-right, an example of indoor scene and of the evo-

lution in time of particles (i.e. layout hypotheses) throughout the optimization process.

For clarity, only the 40 best hypotheses are drawn here. Note how the unlikely layout

hypotheses disappear while the most plausible ones survive and get refined.

5.3 Probabilistic Layout Estimation

As stated above, the input to the proposed inference engine is an image

sequence from which the camera motion and sparse 3D points are esti-

mated. These 3D points are used to generate layout components (walls,

floor, ceiling) by fitting a large number of planes through such points (see

Section 5.2). The output of the inference engine is the layout hypothesis

that better explains the scene in terms of compatibility with observations

and geometrical constraints. At the heart of the proposed approach is a

particle filter-based optimization [139] that is capable of processing can-

didate layout components so as to obtain plausible scene layouts, where

the layout hypotheses represent the particles of the filter. As with any

optimization strategy, this requires four key components: a principled

choice of the layout parameterization (5.3.1); an initialization strategy

(5.3.2) to generate the initial layout hypotheses; a method for exploring

the state space (5.3.3); a score function (5.3.4) to evaluate the quality

of layout hypotheses. In the following section, we will discuss each of

these aspects in details.
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5.3.1 Layout Parametrization

While much prior work has leveraged the Manhattan world assumption,

we believe this is a limiting hypothesis. To overcome this limitation, in

this work a representation similar to [119, 120] (sometimes referred to

as Soft Manhattan) is adopted, which makes the following assumptions

about the environment:

i) Ground plane and ceiling are parallel.

ii) Walls are only constrained to be orthogonal to the ground plane

(and ceiling).

iii) There can be any number of walls and each wall can be displaced

at any angle with respect to other walls.

Thus a room layout is fully parametrized by its gravity vector, the

heights of its ground and ceiling, and a set of walls with only one degree

of freedom for rotation and one for translation.

5.3.2 Initializing Layout Hypotheses

A layout hypothesis is generated as follows. First, the rough direction

of gravity is determined as given by an IMU or, if none is present, by

assuming that the camera optical axis is roughly horizontal when the se-

quence begins. The heights of ground and ceiling are then approximated

by the lowest and highest features tracked by SLAM/SfM along this di-

rection. If they are not observed at initialization time, their heights will

be underestimated at first and adjusted as more parts of the scene are ob-

served. Subsequently, sampling from the initial set of planes fitted to the

3D points obtained from the SLAM/SfM reconstruction (Section 5.2),

each layout hypothesis is assigned a random number of candidate walls

(Figure 5.2(c)). While being assigned to the layout hypothesis, each wall

is transformed by finding the minimal transformation needed to make it

orthogonal to the ground.

5.3.3 Exploring the State Space

The above step gives a very rough initial estimate of the scene layout. In

order to refine this estimate, we propose to “perturb” the layout compo-

nents assigned to each layout hypothesis. This can be done within the

hypothesis itself by:
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• Rotating wall i about the gravity vector by θiw and optimizing its

reprojection error

• Translating wall i by some distance diw and optimizing its reprojec-

tion error

thus refining the hypothesis itself, or by generating a set of new hypothe-

ses. Given a layout hypothesis at time t− 1, a set of new hypotheses can

be generated for the time t “perturbing” the existing one by:

• Rotating the ground plane about a random direction by some angle

θg

• Translating the ground or ceiling by some distance, dg or dc

• Rotating wall i about the gravity vector by θiw

• Translating wall i by some distance diw

• Removing a wall which is currently hypothesized

• Adding a wall which had been removed

• Taking no action

where θg, dg, dc, θ
i
w, and diw are normally distributed. For each layout

hypothesis, only a single action may be performed per time step, as de-

termined by a weighted coin flip. The choice of allowing only one action

per hypothesis per time step is driven by:

i) Keeping the computation amount as low as possible to achieve real-

time performances

ii) Processing image streams of up to 30fps (or more), the expected

changes in the observed scenes are small from frame to frame.

Thus, introducing too much perturbation at each time step could

lead to a fast divergence of the estimation process.

5.3.4 Scoring Hypotheses

At each timestep t, we wish to evaluate the level of agreement of each

hypothesis with the sensor data, i.e., to assign a probability of being a

correct interpretation of the observed scene, to each hypothesis, taking

into account new observations and geometrical constraints:
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where the exponents of the two rightmost terms, pij and aij are bi-

nary values that are initially set zero. pij is set to 1 if walls i and j

are near-parallel by some angular threshold and aij is set to 1 if they

are adjacent. This scoring function is designed to enforce a number of

desirable properties.

Fitness: The initial pre-processing yields planes with varying good-

ness of fit. Thus, to each visible wall, we assign a corresponding fitness

term P i
f , represented by a zero-mean Gaussian over the residual least-

square error after the plane fitting process.

Orthogonality to Ground: In Section 5.3.2 we described a method for

generating orthogonal-to-ground wall candidates from non-orthogonal

planes. The more these planes are altered, the less they are supported by

data. This aspect is captured with a zero-mean Gaussian P i
o(θ), where θ

denotes the amount of rotation required to orthogonalize the wall to the

ground.

Low Reprojection Error: Many feature points tend to fall on the

ground, ceiling, or walls of a scene. To make use of these visual cues,

we track features using the Kanade-Lucas-Tomasi method [140]. To be

robust to outliers, those matches are discarded which i) could not have

come from a plausible camera motion, or ii) don’t share a homography

with a minimum number of other points in the scene. At time t, we

project the keypoints at t − 1 onto all possible walls, and evaluate their

hinge-loss 2D reprojection error. Each point is then assigned to the wall

that minimizes its reprojection error, and the average er is computed for

each wall. For each wall we then assign a probability P i
r(er), which is

normally distributed about 0 pixels.

Manhattan Layout: While we do not leverage the Manhattan assump-

tion to generate layout hypotheses, we recognize that angles are far more

likely to fall in 90◦ or 45◦ increments than, e.g., 87◦. To capture this fact,

for each pair of visible walls we include a term P ij
m (φ), where φ is their

relative angle modulo 90◦ (or 45◦) and P ij
m is a zero-mean Gaussian.

Simplicity: Adding more walls will always improve reprojection er-

ror. Actual layouts, however, are fairly simple: they are far more likely

to contain one large wall than many small ones. To enforce simpler inter-

pretations, for two near-parallel walls we assign a probability P ij
s (d−1)
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which captures how redundant wall i is given the presence of wall j, d

meters away. This is normally distributed about 1
d
= 0, or d→ ∞.

Wall-wall intersection: Small errors in the estimation of wall rota-

tions can not be reliably captured by the reprojection error term. Yet,

such small errors can lead to substantial errors in the displacement of

the intersection between two walls. We exploit this intuition by assign-

ing a probability P ij
w that weights the image evidence supporting an in-

tersection between walls i and j. To obtain this evidence, the 3D line

segment resulting from the intersection is projected into the image and

there compared against 2D line segments extracted with a Canny edge

detector [141].

The final output of the optimization procedure is an estimation of the

3D scene layout, obtained by selecting the layout hypothesis that best

describes the scene in terms of the score function in Eq. 5.1.

5.4 Results

This section presents the experimental results of the proposed method

when tested on the state-of-the-art dataset [119], as well as on a new

challenging dataset that is introduced in this work and that is avail-

able for future comparison [138]. To the best of our knowledge, the

dataset [119] is the only state-of-the-art dataset that can be used for com-

parison for this type of problem. Since the proposed method requires

video sequences as inputs, some datasets cannot be used for evaluation

because they feature single images [107] or non-video (i.e. sparse) im-

ages [142, 143].

5.4.1 Experimental setup

First, two sparse 3D reconstruction techniques, RT-SLAM [22] and Vi-

sualSfM [36] are used to pre-process the image sequences, then the gen-

erated 3D point clouds and camera pose estimations are fed to our al-

gorithm, which outputs the final 3D layout reconstruction. Final recon-

struction results are compared to:

• State-of-the-art approaches: the video-based approach proposed

in [119] and two well known single image methods, [144] and [107]

(Section 2). For completeness, in Table 5.1 we report the results

of [144] composed with a MRF over image frames. Please refer

to [119] for a comprehensive description of this composition.
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Method Excluding ceiling Including ceiling

[119] 90.58 82.17

[144] 82.62 83.30

[144] + MRF 81.44 82.13

[107] 84.70 84.33

Our + VSLAM 86.92 87.01

Table 5.1: Classification accuracy on the Michigan Indoor Corridor Video Dataset. Our

results are compared to the results obtained with [119], [144] and [107].

Method Classification accuracy Average fps

Baseline 70.64 —

[144] 59.29 0.17

[107] 73.59 0.03

Our + VSLAM 86.24 21.63

Our + VSfM 75.94 16.90

Table 5.2: Classification accuracy on the proposed dataset. Our results (with SLAM

and SfM) are compared to the results obtained with a naive baseline method, [144]

and [107].

• Baseline method: in order to show the importance of the eval-

uation and optimization process (Section 5.3), we built a baseline

method consisting in projecting all the possible combination of lay-

out components (i.e. fitted planes, see Section 5.2) into the image

and picking the combination that achieves the best classification

accuracy.

In the experiments we evaluate the quality of the final reconstruction

by means of the classification accuracy, which is a commonly adopted

metric [107, 119, 145]. It is defined as the percentage of correctly labeled

pixels when projecting the estimated 3D scene layout into the image. In

order to evaluate if a pixel is correctly labeled, a groundtruth image is

provided. Labels indicate if the pixel should belong to the ground floor,

to the ceiling or to a wall numbered with an incremental counter. Please

note that, for all the parameters described in Sections 5.3.3 and 5.3.4, the

same configuration was used for all sequences.

5.4.2 Michigan Indoor Corridor Video Dataset

This dataset was proposed in [119] and consists of a set of image se-

quences collected in various indoor environments with a calibrated cam-
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era mounted on a mobile robot. The camera is set up to present zero

tilt (pitch) and roll angles and known fixed height with respect to the

ground floor. The authors in [119] state that their approach strictly relies

on these specific setup constraints and on the ground-walls’ boundaries

detected in the images. This implies that, if the observer does not move

parallel to the ground with known height and if those boundary lines are

not observed, the approach will not be able to generate initial layout hy-

potheses. On the other hand, our approach does not require any of these

assumptions.

The quantitative results of the tests on this dataset are presented in

Table 5.1, while Figure 5.4 shows a visual overview of our performance.

There are a few sequences for which neither SLAM nor VisualSfM are

able to produce any 3D reconstruction due to the very small amount of

motion of the observer (insufficient parallax). These sequences were

not taken into account for the evaluation. Please note that the method

in [119] cannot recover the ceiling part of the scene layout, therefore

the authors did not include these pixels in the evaluation of the perfor-

mances. Since our approach as well as [144] and [107] are able to esti-

mate the ceiling component of the scene layout, and in order to present a

more complete comparison, we add in Table 5.1, beside the original val-

ues, the results where ceilings are included in the evaluation. Please note

that, when excluding the ceiling, the proposed method is second only

to [119] (which was designed to work specifically in such constrained

scenarios), while, when taking into account the whole scene, including

ceiling, the proposed method outperforms all other approaches, while

operating in significantly less constraining conditions.

5.4.3 Proposed dataset

The sequences in the dataset [119] feature substantially simple environ-

ments, as can be seen in the 3D reconstructions in Figure 5.4. With this

work we introduce a new dataset [138] to evaluate the full capabilities

of the proposed approach. As opposed to the previous dataset, we let the

observer freely move (6DoF) around to observe the scene. We collected

10 sequences in a variety of environments, spanning offices, corridors

and large rooms. Most of the sequences frame ground-walls boundaries

for short periods or do not frame them at all; some present scenes that

cannot be represented by a simple box layout model or relying on the

Manhattan world assumption. All the sequences were collected with
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Figure 5.4: Some examples of our results on the dataset presented in [119]. The first and the

third rows show the reprojection of the best layout hypothesis into the image, while the second

and the fourth rows show the same layout hypothesis in the 3D space along with the camera

pose.
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common smartphones, in the attempt to test the proposed method in real-

life scenarios with low-cost sensors.

We compare our proposed method, separately fed with the sparse 3D

reconstructions by VSLAM [22] and VisualSfM [36], with the base-

line method and with the single-image approaches proposed in [144]

and [107]. The method proposed in [119] could not be used for com-

parison, since it requires the observer to move parallel to the ground

floor and with known roto-translation between the ground plane and the

camera.

The classification accuracy results and the mean execution speed (in

fps) of the tests on this dataset are presented in Table 5.2, while Fig-

ure 5.5 shows a visual overview of the dataset and of our performance.

In Table 5.2, please note that: i) the proposed method significantly out-

performs state-of-the-art methods in both classification accuracy and ex-

ecution time; ii) when feeding the proposed approach with the SfM re-

constructions, in order to keep the execution time reasonable, both SfM

and the optimization procedure were run on a small subset of frames

which, despite the ability of SfM to produce denser reconstruction with

respect to SLAM, led to worst reconstruction results.

Please refer to Section 5.4.4 for a discussion of failure and success

cases, additional images and the complete table of the experimental re-

sults.

5.4.4 Failure and success cases analysis

Here we briefly discuss the failure and success cases on the proposed

dataset. In Table 5.3 we present the classification accuracy for each se-

quence in the dataset achieved by the compared methods, while in Fig-

ures 5.6 through 5.10 we show the corresponding visual results. Figures

are organized so that columns represents sequences (see the captions of

the Figures), while rows are encoded with the following order:

• First frame of the sequence.

• Reconstruction result by [144].

• Reconstruction result by [107].

• Reconstruction result by the proposed method fed with VSLAM

(projection).
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Figure 5.5: Some examples of our results on the proposed dataset. The first and the third rows

show the reprojection of the best layout hypothesis into the image, while the second and the

fourth rows show the same layout hypothesis in the 3D space along with the camera pose.
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• Reconstruction result by the proposed method fed with VSLAM

(3D model).

• Reconstruction result by the proposed method fed with VSfM (pro-

jection).

• Reconstruction result by the proposed method fed with VSfM (3D

model).

There are two main types of scenarios where the proposed method

achieves a poorer reconstruction result:

• Scenarios in which the observer do not explore enough the scene

(e.g. Room 1, Room 5 and Lounge 1, where the right walls are

framed for a very short period)

• Scenarios in which the ceiling is very dark and featureless. For

example, in the sequence Room 1, the proposed method is per-

fectly able to recover the non Manhattan geometry of the left side

of the room (unlike [144] and [107]), but fails in estimating the cor-

rect ceiling height, resulting in a poorer classification accuracy wrt

to [107].

On the positive edge, there are also two main scenarios where the

proposed method significantly outperforms state-of-the-art methods:

• Scenarios in which only a small portion of the scene falls within

the field of view of the camera due to the small dimensions of the

scene itself (the observer is pretty close to the walls) or to long focal

length (pretty common on smartphones). A good example of this

scenario is represented by the sequence Room 3, where [144] and

[107] totally fail in reconstructing the correct scene layout, while

the proposed method achieves very good performances.

• Scenes that cannot be represented with a box layout (e.g. Room 4)

or that violate the Manhattan world assumption (e.g. Room 1).

Finally, a short note on the failure of the proposed method fed with

the VSfM reconstruction in the sequence Lounge 2. Repetitive patterns

like chessboards or some modern art drawings can lead the VSfM ap-

proach to generate a confuse cloud of 3D points around the patterns (see

the 3D reconstruction in Figure 5.8 left column). In Lounge 2, a mod-

ern art drawing is present in the second half of the sequence and, in this
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Sequence/Method Baseline [144] [107] Our + VSLAM Our + VSfM

Corridor 66.92 61.17 73.69 81.96 68.68

Entrance 1 74.36 88.04 89.75 89.43 93.72

Entrance 2 69.15 67.55 64.95 97.24 94.06

Lounge 1 71.21 51.76 86.28 81.14 83.31

Lounge 2 57.56 25.11 68.74 88.82 31.28

Room 1 65.32 60.23 76.17 70.08 63.75

Room 2 83.27 74.54 82.69 97.03 91.88

Room 3 71.48 64.68 55.13 93.66 95.52

Room 4 67.26 33.20 54.98 84.79 59.34

Room 5 79.83 66.57 83.52 78.25 77.88

Average 70.64 59.29 73.59 86.24 75.94

Table 5.3: Classification accuracy on the proposed dataset. The scores of all the com-

pared methods are shown for each sequence in the dataset.

case, led to the failure of the whole reconstruction. Please note that, on

the same sequence, the proposed method fed with the VSLAM recon-

struction achieved good results.

5.5 Conclusions

In this work we presented a real-time oriented approach for indoor scene

understanding, addressing the problem of estimating the 3D structural

layout of complex and cluttered indoor scenes from monocular video se-

quences, where the observer can freely move in the surrounding space.

The proposed probabilistic framework allows us to generate, evaluate

and optimize layout hypotheses by integrating new image evidence as

the observer moves. The proposed effective inference engine allows us

to make less limiting assumptions than other state-of-the-art methods

(e.g., Manhattan world assumption, known and fixed camera height). In

the extensive experimental evaluation we demonstrate that our formula-

tion reaches near-real-time computation time and outperforms state-of-

the-art methods in both classification accuracy and computation time,

while operating in significantly less constraining conditions.
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Figure 5.6: Sequence names: Corridor, Entrance 1.
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Figure 5.7: Sequence names: Entrance 2, Lounge 1.
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Figure 5.8: Sequence names: Lounge 2, Room 1.
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Figure 5.9: Sequence names: Room 2, Room 3.
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Figure 5.10: Sequence names: Room 4, Room 5.
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Chapter 6

Real world application - The

USAD project

This projects aims at the development of vehicles capable of driving au-

tonomously in a urban setting, to increase the offer of public transporta-

tion to citizens, even in very low-demand areas. These devices would

allow reasonable costs for the service provider, and therefore for the

customer, while providing a 24-hours on-demand service. We believe

this is the only option to support a decrease in the number of private-

owned cars. Another potential application is the handling and moving

of goods in urban settings, so as to obtain a city-wide low-cost public

logistic system.

6.1 Introduction

Research activities in the topics mentioned in Chapters 3 and 4 are con-

veyed in (or under integration with) this project for real-life application

and testing. For the self-localization aspect, the biggest problem when

navigating in outdoor, especially urban, environments, is the unreliabil-

ity of the GPS localization information. GPS might be accurate enough

in its differential RTK variant, but it does need a given number of satel-

lites in the field of view of the vehicle antenna and, at the same time, the

same set of satellites have to be in the filed of view of the antenna of a

fixed base station; this configuration is hard to set up, not only because of

the temporary lack of enough satellites in view, but also because dense

clouds, vegetation, and buildings, contribute to reduce the visibility of
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some satellites, therefore degrading the accuracy and/or fully disrupting

the service. There are several possible research solutions to this prob-

lem. In the USAD project we are currently testing the two techniques

presented in Chapter 3. For the first one, the Extended Monte-Carlo Lo-

calization, the laser-based approach requires to build very large maps of

the city areas that will be traversed by the vehicle, a very computation-

ally intensive activity that can be executed off-line. These maps will be

used at runtime to localize the vehicle. The second solution, the Visual

Odometry, has the potentiality of easily estimating the camera pose with

respect to a visual 3D map. This can be performed with respect to a

global map, acquired off-line or, as described in Chapter 3 by keeping

a separate process that performs robust mapping within a temporal win-

dow, i.e. mapping only a small surrounding space by adding new map

point and deleting old ones as the vehicle moves. Among the positive

aspects of this latter approach, it is important to mention the much lower

costs of camera devices with respect to the laser scanners, the dropping

of the necessities of building a global 3D map of the city environment

and of scanning the surrounding space by means of tens of thousands

laser beams per second. On the negative side, illumination conditions

and the indirectness of the 3D information could degrade the quality of

the reconstruction and pose estimate.

Although obstacle detection for collision avoidance can be also per-

formed by exploiting laser scanner information, the problem of detecting

and tracking objects in the scene with cameras is tackled as described in

Chapter 4. While the proof of concept and the experimental activity pre-

sented in Chapter 4 were performed with a Matlab implementation, a

C++ real-time implementation is under development.

Finally, the work presented in Chapter 5 is suitable for indoor navigation

and should be tested in such conditions, therefor it is not directly appli-

cable to outdoor environments due to the different nature of the geomet-

ric structures, which cannot be limited to planar patches. Nevertheless,

an accurate estimate of the surrounding space in outdoor navigation, in

terms of higher level descriptions of scene components, is fundamental

to overcome the localization problems mentioned above, as well as for

effective navigation planning and security enforcement. We are currently

working toward adapting this approach to urban outdoor settings. This

implies recovering layouts that do not include just geometric structure,

like planes of the road, buildings facades, etc., but also other, more com-

plex structures like traffic lights, trees, parked cars, etc., which can be
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Figure 6.1: The Alpaca golf cart.

either modeled with geometric primitives (cylinders, ellipsoids, boxes),

or with 3D models of the proper object classes.

The vehicle we are currently using for this activity is an ordinary golf

cart, which we transformed so as to be controlled directly by a computer

(i.e., it has been robotized). The whole robotization process has been

carried on by the IRALab research team, and in particular by the author

of this thesis (Sections 6.3, 6.4 and 6.5).

The effectiveness of this real-life application has been proved with sev-

eral live demos, as will be shown in Section 6.6.

6.2 Overview

The cart is an Alpaca golf cart by Ecology Runner (Figure 6.1) equipped

with a Curtis 1244 MultiModeTMengine control unit (ECU). Its 4KW,

48V direct current engine provides enough power to carry up to 4 peo-

ple over leveled and light uphill grounds. The cart is not provided with

any odometry sensor out-of-the-shelf and the ECU does not offer a dig-

ital interface for speed and brake control. Thus, the robotization process

required a huge amount of work to generate odometry information, in-

terface with the ECU simulating the analogical throttle and operate the

steering wheel. On top of this, all the exteroceptive sensors (cameras,

laser scanners), the computational units, the emergency system and the
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Figure 6.2: Sensors on the golf cart.

power converters had to be designed and realized. In particular, for the

sensor part, three single plane and one four planes laser scanner, two

High Dynamic Range (HDR) and a normal black&white camera were

installed. Figure 6.2 shows where the sensors are located on the golf

cart.

6.3 The autonomous driving system architecture

As discussed above and in the previous chapters, the top level task of

autonomous navigation is composed by a certain number of important

subtasks. Figure 6.3 shows the global structure of the software system

on the cart. Globally, the information flow can be summarized as fol-

lows: raw data are generated by sensors (lasers and cameras) and sent

(green arrows) to the modules that implement robotic perception algo-

rithms such as self-localization, obstacle detection etc. At the same time,

map information is sent (blue arrows) to the planning modules, in partic-

ular the global planner, which is in charge of generating the sequence of

actions the cart will have to perform in order to fulfill the assigned task.

The processed information generated by the perception modules and the

action plans are sent (orange arrows) to the local planner module, which

is in charge of performing two main assignments:

• Short term planning. This is a very delicate task. Indeed, it tack-

les the problem of following the global path generated by the global
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Figure 6.3: The global structure of the software system. Green arrows indicate the

flow of raw data. Blue arrows indicate which modules use the global map information.

Orange arrows show the flow of processed information. The thick dark blue arrow

represents the velocity and steering angle set-points sent to the electronics for actuation.

planner, while being aware of the dynamic obstacles in the sur-

rounding space, thus temporarily modifying the local trajectory to

avoid them.

• Generation of the vehicle desired dynamics. The result of the

short term planning must be converted in velocity and steering an-

gle set-points, which must be then sent (thick dark blue arrow) to

the electronic components for actuation.

6.3.1 Perception modules

Extended Monte-Carlo Localization. The work presented in Section 3.1

is here employed for global localization within a known 3D map. Earlier

versions of this module implemented the standard 2D-3DoF localization

approach AMCL, which proved to perform reasonably in many condi-

tions, as far as the ground plane was sufficiently flat. As the live demo

scenarios moved to less constrained outdoor environments, the need for a

full 3D-6DoF motion model and localization system arose. In particular,

hollows in the ground, ramps and uphill paths produce laser readings that

cannot be matched with the 2D global map, thus misleading the localiza-
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Figure 6.4: The visual odometry module. It exploits the state-of-the-art VisualSfM

implementation in conjunction with the Lie algebra camera localization approach pre-

sented in Section 3.2.

tion process. Furthermore, these same readings produced a high number

of false positive obstacle detections, leading the local planner to slow

down or even stop the vehicle. The drawback of using a full 3D-6DoF

global localization algorithm is the need of generating a 3D map of the

environment; yet, with modern laser scanners and reconstruction tech-

niques, such maps can be easily generated, at least for small to medium

sized worlds.

Visual Odometry. The work presented in Section 3.2 is implemented

here to compute an estimated relative camera motion, to be merged with

the output of the global localization module and with the pure wheel odo-

metry propagation. In presence of a global 3D visual map, this module is

employed as is, while when such a map is not available, it is used in con-

junction with the state-of-the-art VisualSfM implementation in [123].

Figure 6.4 shows how these two components interact to generate the fi-

nal visual odometry camera motion estimate. The image stream is split

up into sequence segments separated by key-frames ([30]). The key-

frames from within a sliding temporal window are sent to VisualSfM for

the off-line computation of a local map, which is then sent to the Lie

camera tracker that will minimize the reprojection error in order to esti-

mate the camera poses in the next sequence segment, until a new output

of VisualSfM is available.

Object Detection and Tracking. This module is not yet available in a
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real-time implementation, although the proof of concept of the work pre-

sented in Chapter 4 and the related experimental activity were performed

with a Matlab implementation. This module should support the obstacle

avoidance activity, improving the navigability skills of the autonomous

vehicle.

6.4 Mechanics

The most important mechanical component of the cart robotization is

the steering system. The Alpaca golf cart came with its normal steering

wheel, to be operated by humans. The current requirements, as they have

been interpreted in our research team, imply that, for safe autonomous

driving, a human must be able, at any moment, to take over the complete

control of the vehicle. Thus the steering robotized system was designed

and developed so as to engage on the main steering column, preserv-

ing the steering wheel in its original position and function. The correct

gear demultiplication factor, altogether with the steering engine power

had to be chosen in order to allow the steering system to turn the wheels

up to the extrema of the motion range, even if the cart is not moving.

Figures 6.5 through 6.10 show the whole design and building process.

The steering wheel will plug on top of the steering column. Please note

that, while in emergency conditions humans can perfectly operate the

steering system, the spring fastener allows to easily engage and discon-

nect the steering engine from the steering system, preventing a human

driver to put additional force to win the engine inertia when operating

the steering wheel.

6.5 Electronics

The process of equipping the cart with the electronic components needed

for robotization required a huge amount of time. In fact, the electronic

systems on-board control all the cart components, acting as an inter-

mediary between the high level autonomous driving algorithms on the

main computer on the one hand, while being in charge of springing all

the safety mechanisms in emergency conditions on the other hand. The

main electronic components on the cart include the steering, throttle and

brake control, encoder reading and emergency disengaging of the au-

tonomous control of the cart. Figure 6.11 shows a simplified schema of
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Figure 6.5: The 3D model of the steering system.

Figure 6.6: A detail of the 3D model of the steering system.
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Figure 6.7: The design process of the steering system components.

Figure 6.8: The assembling process.
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Figure 6.9: The final, fully operational robotized steering system. Steering wheel miss-

ing.

Figure 6.10: The final, fully operational robotized steering system. The steering wheel

is plugged on top of the steering column, allowing humans to operate the steering

system.
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Figure 6.11: The global electrical schema of the cart’s wirings.

the electronic components.

6.5.1 The main control board

This board (Figures 6.12 and 6.13) is in charge of actuating the steering

and throttle commands from the main computer and to provide informa-

tion about the steering position. In order to control the steering wheels,

the steering commands received via USB are converted in angle setpoints

and fed to a PID controller, together with the encoder readings from the

steering engine, to close the control loop. The output of the PID is the

duty-cycle of the pulse width modulated (PWM) signal that the control

board sends to the power H-bridge (Figure 6.14). The H-bridge, which

is opto-insulated from the rest of the circuit to avoid back-propagation

of ripples, converts the PWM logical signal into a power output for the

steering engine by means of a VNH3SP30 automotive fully integrated

h-bridge motor driver, drawing the 24V power supply from the 48V-24V

power converter.

Interfacing with the main cart engine control unit (ECU) required a

slightly more complicate architecture, since the Curtis 1244 MultiModeTM

does not provide a digital interface to directly control the cart 4KW, 48V

engine. The final solution was designed so as to emulate the throttle

pedal, which presents a 4-wire interface, 2 wires for the security inter-

lock switch and 2 for the analog value of a potentiometer whose end-of-

range value is 5KOhm. This emulation is performed on a separate board

(Figure 6.15) by means of a digital potentiometer MCP41010, which is

controlled via I2C from the main control board.
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Figure 6.12: The main control board.

Figure 6.13: The main control board.
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Figure 6.14: The steering H-bridge board. The logical PWM signal is converted by

means of a VNH3SP30 automotive fully integrated h-bridge motor driver.

Figure 6.15: The potentiometer board.
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6.5.2 Encoders and encoder board

The absence of an integrated odometry system in the original cart was

the source of many problems. The developed solution is based on an

electro-mechanical system, composed by mechanical parts engaged in-

side the drums of the rear wheels, just outside the brake shoes, and an

electronic part made of two photo-diodes per wheel, plus a reference po-

sition strip of printed paper, also engaged (i.e., glued) into the drums. A

mechanical part of the drum is substantially a large cylinder that is fixed

to the wheel axis, and carries on its internal side a chess-printed paper

strip. The photo-diodes are positioned on a metallic plate, suitably ma-

chined for fitting inside the drums so as to read the alternating of black

and white on the chess strip, out of phase by π
2
. The noisy signal from

the photo-diodes is sent to a filter board that converts them into a logical

square wave, which is, in turn, sent to the encoder board (Figure 6.16)

that performs the quadrature and counts the ticks, thus allowing the mea-

suring of the angular velocity of each wheel. The main problems that

arose while developing the encoder odometry system were related to the

issue of keeping the iron dust generated by the drum brakes outside the

photo-diodes area and to the risk of misalignment of the photo-diodes

due to the vibrations; both have been resolved, the first by means of a

carefully designed toroidal machined part, on which the strip was glued,

which had a specific protrusion aiming at keeping dust away from the

strip and the sensors; the second by means of fixtures for the photo-diode

sensors mounted on the sensor plates.

6.5.3 Emergency board

Last, but perhaps among the most important of all, the emergency board

is in charge of disengaging the autonomous control of the vehicle and

to deliver it to the human driver. It is a pretty sophisticated game of re-

lays that allows to safely remove any automated control of the vehicle

even in case of power loss and/or firmware/software failure. Figures 6.17

and 6.18 show the prototype design and its realization. Among the dif-

ferent features, this board is able to switch between automated and man-

ual control of the steering system, the throttle and the forward/backward

gear selection; the switch action can be triggered by means of both a

non-critical operation button and a series of emergency stop buttons dis-

placed in strategical positions around the cart.
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Figure 6.16: The encoder board.

Figure 6.17: The relay board.
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Figure 6.18: The relay board.

6.6 Live demos

• November 2013 - Autonomous car driving live demo at the Na-

tional Museum of Technology “Leonardo Da Vinci” in Milano.

Upcoming event. This demo is the first live public event in which

the Visual Odometry system described in Section 3.2 will be em-

ployed. Our autonomous car will be driving people around the mu-

seum campus (outdoor and indoor) for 4 days in an heavily crowded

environment.

• May 2013 - Autonomous car driving live demo at Wired Next

Fest. For this demo we had our autonomous car driving people

around for 3 days in an mild off-road (dirt/gravel road), heavily

crowded environment at the city park of Porta Venezia in Milano.

The major problems that needed to be dealt with were related to the

self-localization due to the repetitiveness of the map patterns gener-

ated by the tree-lined paths within the park and the huge amount of

people, kids and dogs present in the environment running here and

there about the vehicle. Figures 6.19 through 6.21 show different

moments during this demo.

• March 2013 - Autonomous car driving demo, interview and

photo session for “Quattro Ruote” (automobile magazine). In

this demo we showed the ability of our autonomous car to drive

inside an indoor/outdoor parking lot. The main difficulties here

were given by the restricted navigable space and by the risk of
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Figure 6.19: The demo at the Porta Venezia city park in Milano.

Figure 6.20: The demo at the Porta Venezia city park in Milano.
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Figure 6.21: The demo at the Porta Venezia city park in Milano.

sudden backward motion of the other parked cars. Figures 6.22

through 6.24 show different moments during this demo.

• January 2011 - Outdoor autonomous car driving demo with

RAI 3 (national television). In this demo we recorded for RAI

3 some sequences of autonomous driving within the University of

Milano - Bicocca campus. The main difficulties in this demo were

related to the small amount of map elements available for self-

localization, the restricted space available for maneuvering and the

presence of diffused hollows in the terrain. Figures 6.25 through 6.27

show different moments during this demo.

• November 2010 - Indoor autonomous car driving demo at the

Electrical Intelligent Vehicles Fair 2010 (EIV2010). In this demo

we had our autonomous car driving people between stands of the

fair for 4 days, moving through small spaces and in a highly crowded

environment. Figures 6.28 through 6.30 show different moments

during this demo.

6.7 Conclusions

This project represents the real life testing bed for the research topics

presented in this thesis. The effectiveness of the software implementa-

tion of the presented algorithms, as well as the quality of the mechani-

cal and electronic design and development were proven in several live
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Figure 6.22: The demo for the automobile magazine “Quattro Ruote”.

Figure 6.23: The demo for the automobile magazine “Quattro Ruote”.
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Figure 6.24: The demo for the automobile magazine “Quattro Ruote”.

Figure 6.25: The demo for RAI 3 (national television).
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Figure 6.26: The demo for RAI 3 (national television).

Figure 6.27: The demo for RAI 3 (national television).
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Figure 6.28: The demo at the EIV Fair 2010.

Figure 6.29: The demo at the EIV Fair 2010.
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Figure 6.30: The demo at the EIV Fair 2010.

demos that stressed the cart resistance and the robustness of the au-

tonomous navigation system. Among the difficulties encountered during

the live demos, the most challenging were related to the crowded envi-

ronments, hard localization conditions, tiny spaces for maneuvering and

uneven terrains. All of these challenging conditions were met and all the

demos were successfully performed.
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Figure 6.31: The IRA team.

Figure 6.32: The IRA team.



Appendix A

Lie algebra

The approach presented in Section 3.2 exploits the local properties of

the SE(3) group and its associated se(3) algebra. The purpose of this

appendix is to give the reader an introduction to Lie groups and an ex-

planation of the properties exploited in the approach mentioned above.

This content is inspired by [146] and [147], as well as by several internal

technical reports published by different research groups.

A.1 Groups

A group (G, I,⊕) is an algebraic structure represented by a set G, the

neutral element I of G, and an associated operation ⊕ : G × G → G,

defined over the group elements, that combines two of them to generate

a third one. A simple example of group is the set of integer numbers

together with the sum operation. The operation ⊕ is called the group

law and must satisfy, together with the underlying set G, the four group

axioms:

• Closure - ∀a, b ∈ G a⊕ b ∈ G

• Associativity - ∀a, b, c ∈ G a⊕ (b⊕ c) = (a⊕ b)⊕ c

• Neutral element - ∀a ∈ G a⊕ I = I ⊕ a = a

• Unique inverse element - ∀a ∈ G ∃b ∈ G a⊕ b = b⊕ a = I

Commutativity is not a required property for groups, thus, for two ele-

ments a, b ∈ G, the equation
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a⊕ b = b⊕ a

is in general not true. Groups that are commutative are called abelian

groups.

If a subset S ⊂ G forms a group (S, I,⊕), then (S, I,⊕) is called a

subgroup of (G, I,⊕).

A.1.1 Group homomorphisms

A homomorphism is a structure-preserving map between two algebraic

structures. In particular, a group homomorphism f : G → H between

two groups (G,⊕) and (H,⊗) is required to satisfy the following equa-

tion:

∀a, b ∈ G f(a⊕ b) = f(a)⊗ f(b)

An isomorphism is a bijective homomorphism. In our case, two groups

G and H are called isomorphic if there exist two homomorphisms e :

G→ H and f : H → G such that

∀h ∈ H e(f(h)) = h

and

∀g ∈ G f(e(g)) = g

A.1.2 General Linear Group GL(n)

The General Linear group GL(n) is the group of all n× n non-singular,

i.e. invertible, real-valued matrices, the group law being the matrix mul-

tiplication. The neutral element is the identity n × n matrix In and the

inverse operation is the matrix inverse. All the groups we will encounter

later (e.g. O(3),SO(3),SE(3), ecc.) are called matrix groups and are sub-

groups of the General Linear group GL(n).

A.2 Differentiable manifolds

A manifold is a topological space that can be locally approximated with

an Euclidean space. More precisely, each point of an n-dimensional

manifold has a neighborhood that is homeomorphic to the Euclidean

space of dimension n. A manifold M is parametrized in terms of a set
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Figure A.1: Graphic representation of the tangent plane to a 2-sphere. It can be used

for an intuitive explanation of the concept of tangent space.

(namely an atlas) of local coordinate charts of the form (φ, U), where

φ : U ⊂ M → R
n maps points in the set U into R

n and is called

a smooth map. An atlas in which, for any two local coordinate charts

(φ, U) and (ψ, V ), the function f = ψ−1◦φ is bijective and both f and its

inverse f−1 are C∞, is called a smooth atlas. A (smooth) differentiable

manifold is a manifold that admit such a smooth atlas.

A.2.1 Tangent spaces

A tangent space of a smooth manifold M at a point p is the set of all

derivations of the form Xp : C
∞(p) → R, where C∞(p) denotes the set

of smooth, real-valued functions on M defined over some open neigh-

borhood of p.

From a purely intuitive point of view, the concept of tangent space can be

explained with the example of a sphere (our manifold M ) and a tangent

plane at a point p on the sphere. Figure A.1 gives a graphic represen-

tation of the sphere example. As shown in Figure A.2, tangent spaces

can be merged together to form a two higher dimensional differentiable
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(a) (b) (c)

Figure A.2: Graphic representation of the merging of tangent planes to a 2-sphere. The

set of all the tangent spaces of a manifold M is called the tangent bundle.

manifold. The set of all the tangent spaces of a manifold M is called the

tangent bundle of M .

The tangent space at p is made of tangent vectors, each representing a

possible direction to pass through p. More formally, vectors of a tangent

space can be thought of as partial (directional) derivatives of the smooth

map φ : U ⊂M → R
n.

For example, the rotation matrix around the x axis

Rx(t) =





1 0 0

0 cos(t) − sin(t)

0 sin(t) cos(t)





will be shown later to be a smooth map on the Lie group SO(3). Its

tangent vector and, therefore, a tangent vector of the Lie group SO(3) is

∂

∂t
Rx(t)|t=0 =





0 0 0

0 − sin(0) − cos(0)

0 cos(0) − sin(0)



 =





0 0 0

0 0 −1

0 1 0





In general, the set of all tangent vectors at a point p on a manifold M

forms a basis for the tangent space, allowing to write

Xp = X1
∂

∂x1
+ · · ·+Xn

∂

∂xn

with (X1, . . . , Xn) being the local coordinate representation of Xp.
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A.3 Lie groups

A Lie group is a group and at the same time a smooth manifold, for

which the group operations of multiplication and inversion are smooth.

In the theory of Lie groups, algebraic and calculus operations are not

defined on the global object, the group, but on its local or linearized

version, i.e. the associated Lie algebra.

Examples of Lie groups include:

• The Euclidean space under addition. It is, in particular, an abelian

Lie group, since its elements commute under addition.

• The general linear groupGL(n,R). As mentioned above, it is the

group of all the n×n nonsingular matrices (det 6= 0) together with

the matrix multiplication as the group law. It is a smooth manifold,

since both matrix multiplication and matrix inversion are smooth in

the matrix components.

• The special orthogonal group SO(3). It is a subgroup of GL(n)

and its elements are all the n×n orthogonal matrices that represent

a pure rotation. It is also a subgroup of the orthogonal group O(3),

which includes both pure rotation matrices (det = +1) and matri-

ces representing a rotation followed by a reflection (det = −1).

• The special euclidean group SE(3). It is the group of all rigid

body transformations in R3 and is defined as the composition of

a rotation R and a translation p. Formally, its elements are the

mappings g : R3 → R
3 of the form g(x) = Rx + p and can be

written in matrix notation as

g =

[
R p

0 1

]

where R ∈ SO(3) and p ∈ R
3. The SE(3) is a Lie group of dimen-

sion 6.

A.3.1 Lie algebra

A Lie algebra g associated with a Lie group G, is an algebraic struc-

ture represented by a tangent (vector) space of G, together with the Lie

bracket, a binary operation [·, ·] : g× g → g subject to the axioms
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• Skew-symmetry

∀v, w ∈ g : [v, w] = −[w, v]. This axiom implies bilinearity and

alternating on g.

• Jacoby identity

∀v, w, z ∈ g : [[v, w], z] + [[z, v], w] + [[w, z], v] = 0

Please refer to Section 3.2.1 for examples of elements belonging to the

so(3) and se(3) algebras.

A.3.2 The exponential map

Now that we have defined the smooth manifolds and their associated

algebras, we need a means of mapping elements between them. For ma-

trix Lie groups this can be done using the exponential map, which is the

generalization to all differentiable manifolds of the ordinary exponential

function

ex : R → R
+, ex =

∞∑

k=0

xk

k!

Let X be a n× n matrix, then the exponential map of X is defined as

exp(X) : Rn×n → R
n×n, exp(X) =

∞∑

k=0

Xk

k!

where X0 = I .

The exponential map for matrix Lie groups (the matrix exponential) can

be proved to be invertible [147] (matrix logarithm), and it is easy to see

that exp(0) = I . These two properties are sufficient to state that the

matrix exponential maps elements from the tangent space to its corre-

sponding Lie group.

A.3.3 Exponential map for SO(3)

Despite the general definition of the matrix exponential is quite hard to

implement, there is a closed form representation that helps in that sense.

Let ω ∈ R
3, then exp([ω]×) ∈ SO(3) represents a rotation around ω

by an angle ‖ω‖. The closed form solution is given by the Rodriguez

formula
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exp([ω]×) = I +
[ω]×
‖ω‖

sin(‖ω‖) +
[ω]2×
‖ω‖2

(1− cos(‖ω‖)) (A.1)

It is important to notice that when ‖ω‖ → 0, such formulation of exp([ω]×)

would be indefinite. In this case we observe that

lim
‖ω‖→0

sin(‖ω‖)

‖ω‖
= 1

and

lim
‖ω‖→0

1− cos(‖ω‖)

‖ω‖2
=

1

2

thus the Rodriguez formula simplifies to

exp([ω]×) = I + [ω]× +
1

2
[ω]2× = I

A.3.4 Exponential map for SE(3)

In a similar fashion as for SO(3), there exists a closed form for the ma-

trix exponential to map elements of se(3) into roto-translation matrices

of SE(3). In particular, let µ =
(
v

ω

)
∈ R

6, the corresponding matrix

form in se(3) is

[
[ω]× v

01×3 0

]

and the closed form for the matrix exponential is

exp(µ) =

[
exp([ω]×) V v

01×3 0

]

(A.2)

where

V = I +
[ω]×
‖ω‖2

(1− cos(‖ω‖)) +
[ω]2×
‖ω‖3

(‖ω‖ − sin(‖ω‖)) (A.3)

Again, when ‖ω‖ → 0, exp(v, [ω]×) is indefinite and, since

lim
‖ω‖→0

‖ω‖ − sin(‖ω‖)

‖ω‖3
=

1

6

the Equation A.3 reduces to
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exp([ω]×) = I +
1

2
[ω]× +

1

6
[ω]2× = I

A.4 Jacobians for camera pose estimation

As discussed in Section 3.2, in order to perform minimization of the

reprojection error function E(µ) with respect to µ, we first need to com-

pute its Jacobian
∂E(µ)
∂µ

. Let us then decompose the error function as

in Section 3.2.2; in particular, we are interested in the roto-translation

matrix M

(
u

v

)

= Pr(MPw) (A.4)

where Pr(x) is the pinhole-camera model projection. Let us start from

the generic projection (not the pinhole-camera model one), i.e. the func-

tion

proj : Rn → R
n−1, proj(x) =

1

xn






x1
...

xn−1






Its Jacobian is given by

∂proj(x)

∂x
=

1

xn




In−1×n−1






x1
...

xn−1









 (A.5)

Now, the pinhole-camera model can be rewritten as

Pr(x) = f · proj(x) + c

where f is the 2×2 diagonal matrix, whose diagonal (fx, fy) consists of

the x and y components of the camera focal length, while c is the camera

center. Its Jacobian is given by

∂Pr(x)

∂x
=

[
fx 0

0 fy

]
∂proj(x)

∂x
=

=
1

x3

[
fx 0

0 fy

] [

1 0 −x1

x3

0 1 −x2

x3

] (A.6)
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Finally, expressing the roto-translation M by means of the exponential

map of µ, leads us to [147, Appendix B]

∂proj(M · x)

∂µ

∣
∣
∣
∣
µ=0

=
∂proj(exp(µ)· x)

∂µ

∣
∣
∣
∣
µ=0

=

= [I3×3 − [proj(M · x)]×]

(A.7)

where proj(M · x) = Rx + t, R and t being, respectively, the rotational

and translational components of M .

Putting together results obtained in Equations A.6 and A.7, the com-

plete 2 × 6 Jacobian for the camera model, including the camera roto-

translation with respect to the map points, is

∂E(µ)

∂µ

∣
∣
∣
∣
µ=0

=
∂(zi − ẑj)

∂µ

∣
∣
∣
∣
µ=0

=
∂(zi − Pr(proj(exp(µ)·Pw)))

∂µ

∣
∣
∣
∣
µ=0

=

= −
1

x3

[
fx 0

0 fy

] [

1 0 −x1

x3

0 1 −x2

x3

]

[I3×3 − [x]×]

(A.8)

where x = proj(exp(µ)·Pw, i.e. x = RPw + t.
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Appendix B

Pure reactive path follower

This appendix briefly describes the approach that was used, from 2010

to the first half of 2013, as the lateral control strategy in the real-life

application presented in Chapter 6.

B.1 The lateral control problem

As discussed in the previous chapters, autonomous robots need a means

of executing planned actions. Given a trajectory, the robot must be able

to stick to it as close as possible, at the maximum possible speed. It is

easy to see that an excessive oscillation around the trajectory will lead

to uncomfortable motion and, most importantly, to the need of reduc-

ing the speed in order to keep the oscillation under control. This fact is

not as impacting for indoor, slowly moving robots, but it becomes cru-

cial when the mobile robot is an autonomous car, driving at considerable

speed. There are few works on this topic, the most relevant being the

one by Sotelo [148]. In this work, the author tackles the problem of

lateral control strategy for vehicles implementing the Ackerman kine-

matics. After implementing this approach, it showed its sensibility to

the calibration of the system parameters. Since finding the optimal set

of parameters revealed to be a very hard task, a different approach was

developed.
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B.2 The proposed approach

Once the vehicle pose is expressed in terms of its translation and rotation

error with respect to the desired trajectory, the expected output of a lat-

eral control strategy is a set-point for the steering wheel angular position

and a set-point for the vehicle tangential speed.

The proposed method consists in two pure reactive functions that map

the translation-rotation error in the two desired set-points. It is designed

to be easily tuned to accommodate for the vehicle physical capabilities

and for the desired smoothness/abruptness of the resulting movement.

B.2.1 Computing the errors

Let assume we are given the odometry readings from the rear wheels of

the vehicle, i.e. the amount of space traveled by each wheel in a time

lapse ∆t. Let us call them ∆L for the left wheel and ∆R for the right

one. Let b be the baseline between the rear wheels. Then, the transfor-

mation that expresses the new vehicle pose (X, Y, θ)New with respect to

the old one (X, Y, θ)Old is







Cos
[
∆L−∆R

b

]
Sin

[
∆L−∆R

b

] b(∆L+∆R)Sin[∆L−∆R
b ]

2(∆L−∆R)

−Sin
[
∆L−∆R

b

]
Cos

[
∆L−∆R

b

]
−

b(∆L+∆R)Sin[∆L−∆R
2b ]

2

∆L−∆R

0 0 1







(B.1)

and the transformation that expresses the new vehicle pose (X, Y, θ)New

with respect to the world is







Cos(γ) Sin(γ) 2XOld(∆L−∆R)+b(∆L+∆R)Sin[θOld]+b(∆L+∆R)Sin(γ)
2(∆L−∆R)

−Sin(γ) Cos(γ) 2Y Old(∆L−∆R)−b(∆L+∆R)Cos[θOld]+b(∆L+∆R)Cos(γ)
2(∆L−∆R)

0 0 1






(B.2)

with γ being

γ =

[
∆L −∆R − bθOld

b

]

With the transformation in Equation B.2 it is possible to express the ve-

hicle pose (Xc, Yc, θc) with respect to the world, or, in the case a global

map is not available, with respect to the same reference frame that is

used to express the trajectory points. Let us now consider the point

(Xp, Yp, θp) on the trajectory closest the vehicle, which can be easily



B.2. The proposed approach 139

computed in terms of the Euclidean distance. The transformation that

expresses a world point with respect to the vehicle is





Cos [θc] Sin [θc] −Cos [θc]Xc − Sin [θc]Yc
−Sin [θc] Cos [θc] Sin [θc]Xc − Cos [θc]Yc

0 0 1



 (B.3)

and, accounting for the rotation error θe = θc − θp






Cos [θc + θe] Sin [θc + θe] −Cos [θc + θe]Xc − Sin [θc + θe]Yc

−Sin [θc + θe] Cos [θc + θe] Sin [θc + θe]Xc − Cos [θc + θe]Yc

0 0 1






(B.4)

Thus, the point (Xp, Yp) expressed with respect to the vehicle reference

frame is
(

−Cos [θc + θe]Xc + Cos [θc + θe]Xp + Sin [θc + θe] (−Yc + Yp)

Sin [θc + θe]Xc − Sin [θc + θe]Xp + Cos [θc + θe] (−Yc + Yp)

)

(B.5)

And, in particular, the Y coordinate is the one that expresses the distance

lateral error De of the vehicle with respect to the trajectory.

B.2.2 Generating the set-points

Using the errors De from Equation B.5 and θe, the bivariate function

fSteering : R
+ × R → (0, 1)

fSteering =
1

2
+
1

2
Tanh [(−1 + Cos [θe] +De)αSteering1 − αSteering2] (B.6)

maps the translation/rotation error into a (0, 1) interval, representing the

intensity of the steering action that needs to be applied to the steering

wheel. Figure B.1(a) shows the plot of the steering function with pa-

rameters tuned for smooth driving actions, while in Figure B.1(b) the

parameters are tuned for a more abrupt driving style.

Similarly, the bivariate function fThrottle : R
+ × R

+ → (0, 1]

1− Tanh [DeαThrottle1 +De|θe|+ αThrottle2|θe|] (B.7)

maps the translation/rotation error into a (0, 1] interval, representing the

intensity of the throttle that needs to be applied. Figure B.1(a) shows the

plot of the throttle function with parameters tuned for smooth driving ac-

tions, while in Figure B.1(b) the parameters are tuned for a more abrupt

driving style.
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(a) (b)

Figure B.1: The steering function. The symmetric axis ranging from −π
2

to π
2

repre-

sents the θe while the axis ranging from 0 to 3 represents the De. Parameters are tuned

for smooth (a) and abrupt (b) driving styles.

(a) (b)

Figure B.2: The throttle function. The axis ranging from 0 to π represents the θe while

the axis ranging from 0 to 3 represents the De. Parameters are tuned for smooth (a)

and abrupt (b) driving styles.
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[5] Rainer Kümmerle, Rudolph Triebel, Patrick Pfaff, and Wolfram

Burgard. Monte carlo localization in outdoor terrains using multi-

level surface maps. In In Proc. of the Int. Conf. on Field and

Service Robotics, 2007.

[6] T. Suzuki, M. Kitamura, Y. Amano, and T. Hashizume. 6-dof

localization for a mobile robot using outdoor 3d voxel maps. In

IROS, 2010.

[7] S. Thrun, D. Fox, W. Burgard, and Dellaert. F. Robust monte carlo

localization for mobile robots. Artificial Intelligence, 2001.

[8] Cody C. T. Kwok, Dieter Fox, and Marina Meila. Adaptive real-

time particle filters for robot localization. In ICRA.

[9] Kai Lingemann, Hartmut Surmann, Andreas Nüchter, and
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