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Abstract

In this thesis, we present a probabilistic framework for ego-vehicle localization called

Road Layout Estimation framework. The main contribution to the vehicle localization

problem is the synergistic exploitation of heterogeneous sensing pipelines, as well as

their matching with respect to the OpenStreetMap service. The approach is validated

in different ways by exploiting different visual clues. Firstly by using the road graph

provided by the OpenStreetMap service, then exploiting high-level features like inter-

sections between roads, buildings façades, and other road features. Regarding the ef-

fectiveness of the road-graph exploitation, its is proven by achieving real-time compu-

tation with state-of-the-art results on a set of ten not trivial runs from the KITTI dataset,

including both urban/residential and highway/road scenarios. Moreover, a probabilistic

approach for detecting and classifying urban road intersections from a moving vehicle

is presented. The approach is based on images from an on-board stereo rig. It relies on

the detection of the road ground plane on one side, and on a pixel-level classification

of the observed scene on the other. The two processing pipelines are then integrated

and the parameters of the road components, i.e., the intersection geometry, are inferred.

As opposed to other state-of-the-art off-line methods, which require processing of the

whole video sequence up to when the vehicle is inside the intersection, our approach

integrates the image data by means of an on-line procedure. The experiments have

been performed on the well-known KITTI datasets as well, allowing the community

to perform future comparisons. Besides the pure road interpretation schemes, in this

work we also present a technique that takes advantage of detected building façades

and OpenStreetMaps building data to improve the localization of an autonomous vehi-

cle driving in an urban scenario. The proposed approach also leverages images from

the stereo rig mounted on the vehicle to produce a mathematical representation of the

buildings’ façades within the field of view. This representation is matched against the

outlines of the surrounding buildings as they are available on OpenStreetMaps. All

the retrieved features are fed into our probabilistic framework, in order to produce an

accurate lane-level localization of the vehicle in urban contexts. Finally, as to achieve

a lane-level localization also in highway scenarios, we propose two methods that al-

low the framework to leverage the lane number and the road width. The proposed

approaches have been tested under real traffic conditions, showing satisfactory perfor-

mances with respect to the map-matching-only settings and compensating the noisy

measures of a basic line detector.
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Chapter 1

Introduction

After approximately one century from the first attempts to create au-

tomated driving cars, the recent progress in the context of Intelligent

Transportation Systems allows us to consider the autonomous driving

cars just a matter of time. Within a relatively short period, human drivers

are going to share the road with artificial robotized vehicles, including

cars and vehicles of autonomous public transportation systems. Obtain-

ing a high level of reliability for such systems is then mandatory, as to

ensure the safety of people’s life and realistic usage levels of the ve-

hicles. While active safety systems stemming from the vehicle control

theory like the ABS and the ESP are nowadays mandatory, the next gen-

eration of Advanced Driver Assistance Systems, or ADAS, will need

robust environment perception algorithms in order to securely perform

self-driving maneuvers, i.e., dynamic driving tasks on a sustained basis1.

As every robotic agent, many of these algorithms require an accurate lo-

calization within a representation of the environment and a rich descrip-

tion of the surrounding scene in terms of traffic signs, road lanes, other

cars, etc. Towards this goal, in this thesis we present a system that allows

the vehicles to handle the perceived features of the surrounding scenario

and to leverage the information of the cartographic maps retrieved from

a mapping provider like the OpenStreetMap service.

1.1 Motivations

Differently from indoor and outdoor mobile robotics platforms, which

are generally operated in safe controlled areas, autonomous vehicles are

1SAE International J3016 Standard Levels 3 to 5 [1]
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required to fulfill common roads regulations in order to safely drive in

real-world, human-populated environments. For this reason, these ve-

hicles need a complete situational awareness of their surroundings. On

the one hand, such rich representations require perception algorithms

aimed at detecting, tracking and avoiding obstacles, as well as to un-

derstand the areas where the vehicles can and can not drive. It has to

be noticed that in real world scenarios these critical systems have no

chance to rely exclusively on external position measurements. Consid-

ering that the necessary vehicle localization accuracy for a safe autono-

mous driving is estimated being on the order of 10 cm [2], the availabil-

ity and reliability limitations coming from the even most sophisticated

Global Navigation Satellite Systems (GNSS) cannot reliably guarantee

lane-level localization accuracies, i.e., a sufficiently precise localization

to avoid catastrophic failures. On the other hand, we have to consider

the undeniable potential arising from other information sources such as

the cartographic maps, whose feature set can be leveraged as a priori

knowledge in a large amount of feature detector. It is worthwhile to

consider that the number of features provided by these services is nowa-

days sufficient for the vehicle localization process, specifically in dense

urban areas where city-wide projects like Open LiDAR2 or the upcom-

ing high-definition maps, especially designed for autonomous cars, are

candidates to allow vehicle localization systems to outclass the accura-

cies provided with GNSS signals only. Although some ADAS systems

are today already commercial products in the automotive industry, the

localization problem still needs a definition of a standard set of percep-

tion capabilities and a method to handle the observed features. Towards

this goal, in this thesis we present a technique to synergically integrate a

heterogeneous sensing pipeline within a single framework of perception.

1.2 Problem Statement

Given a vehicle in one of the proposed driving scenarios, our purpose

is to provide a reliable localization estimate without experiencing typi-

cal GNSS accuracy degradations. We propose to exploit standard carto-

graphic maps, to integrate their extended knowledge base, initially con-

ceived for human users’ applications. In details, we jointly tackle both

highway and residential contexts, as they place similar challenges yet

2https://rapidlasso.com/2017/01/03/first-open-lidar-in-germany/

https://rapidlasso.com/2017/01/03/first-open-lidar-in-germany/
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Figure 1.1: Typical localization accuracy resulting from GNSS systems. In urban areas,

their signals are often weak or greatly corrupted by multi-paths. Consequently, vehicle

localization within a lane is not possible. Please notice that the accuracies are not

constant and vary also from receiver to receiver, preventing a safe cooperative driving

using GNSS-based systems only.

simultaneously requiring different approaches with regard to the vehi-

cle pose estimation issue. For this purpose, our system exploits a stereo

video stream, as camera applications to the mass market is not ham-

pered anymore by high equipment price. From a technical perspective,

we tackle the vehicle localization problem proposing an on-line frame-

work designed to handle the localization uncertainties that can arise in

both urban and highway scenarios. These environments allow us to set a

first interesting consideration, which is strictly connected with each driv-

ing field: which features could be exploited to enhance the localization

estimate? Are they sufficient? In this thesis, we try to solve this issue by

introducing into our framework four different sensing pipelines, aimed

at detecting different elements of the vehicle’s surroundings. The detec-

tors are specifically designed to leverage specific characteristics of the

scene, in such a way as to allow the localization framework to exploit

the detections in a global perception system.

1.3 Challenges

Instead of relying on a monolithic framework capable of a total scene

understanding, we aim at creating a probabilistic scheme that enables

a productive integration of information generated by any kind and any

number of sensors. In the context of autonomous vehicles, achieving a

reliable and adequate vehicle localization presents multiple challenges



4 Chapter 1. Introduction

which are, in most cases, related to the environment perception. On the

one hand, the availability and reliability limitations coming from GNSS

systems, which can give us no more than an in-road estimate, as depicted

in Figure 1.1, require further detection pipelines in order to create a de-

scription of the surrounding scene. The main issue in detecting relevant

features in common driving scenarios using computer vision algorithms

is due to the variability of the features and the different environmental

conditions. This is even more challenging given the huge amount of

clutter presents in complex areas such as cities.

While a large number of approaches concerning the detection of sin-

gular scene elements, such as road markings and lanes [3, 4, 5, 6, 7, 8],

cartographic approaches [9,10,11,12,13], buildings [14,15,16,17,18,19]

and intersections [20, 21, 22, 23, 24] were proposed over the recent past,

these features alone are usually only robust in specific scenarios, e.g.,

urban canyons or highways. Thus, they cannot guarantee the designed

localization accuracy on a sustained basis, i.e., during a journey through

different driving contexts as required in SAE Full Automation level.

Consider, for instance, the situation depicted in Figure 1.2. A car trav-

eling with only the GNSS signal has a typical localization uncertainty

on the order of 10-20 meters [25], which is definitely not enough for

lane-level positioning. A first attempt to reduce this rough estimate is to

leverage the existing cartographic maps, allowing the system to place the

vehicle, at least, on the road. However, the main challenge arising from

this approach is related to the misalignments between the cartography

and the real road lanes; moreover, no further information is here pro-

vided with respect to the longitudinal axis. One possible solution could

be as follows. If the system was able to detect the road surface, i.e., with-

out a supplementary road marking analysis, we would be able to identify

our distance from the center of an intersection. Adding the detections of

the surrounding buildings would finally result in a lane level localization

estimate, contributed by all of the aforementioned features.

1.4 Applications

The purposes of the proposed system are not limited to the vehicle po-

sitioning task. Localization is one of the fundamental requirements for

advanced applications like the strategic aspects of the driving task, e.g.,

planning and navigation an automated driving system. Having a proper
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(a) Usual vehicle localization estimates, given the

GNSS signal only, have uncertainties on the order of

10-20 meters

(b) Including a road graph in the localization process

can help the system to reduce the uncertainty, achiev-

ing in-road level accuracies. Please note that the lo-

calization can be biased by misalignments

(c) If the system is able to detect the road surface

and its boundaries, it will be able to center within

it, detecting and correcting the misalignments bias.

No improvements over the longitudinal axis are still

achieved

(d) Detecting an intersection area like in this image,

would help the system to reduce the longitudinal un-

certainties. Moreover it would allow the system to

discriminate between contrasting hypothesized esti-

mates.

(e) In urban areas, adding the buildings’ detection

would result in a lateral improvement. Longitudinal

improvements may also be achieved in proximity of

intersection areas, exploiting buildings’ on the oppo-

site side

(f) Additional detections allow the system to compare

the estimates with respect to each other, enriching the

scene description and providing a scene understand-

ing framework

Figure 1.2: The figure depicts the proposed scheme architecture used to tackle the

localization problem. It consists in a probabilistic scheme that enables a productive

integration of information generated by specific sensing pipelines.
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localization within a component-wise system would allow us to exploit

the detection set in a proactive manner. As an instance, a road mark-

ing detector may benefit from the results of a façades detection pipeline,

by limiting the area to take into consideration. In reference to mapping

services like OpenStreetMap, having a prior estimate over the number of

current lanes of a hypothesized position may allow the system to adapt to

specific illumination situation by automatically tuning its parameters and

thus to increase its reliability and the achievable vehicle driving modes,

i.e., the type of driving scenarios. Finally, the results of the single detec-

tors could be also used to update, validate or even integrate the features

within the mapping services or, at least, to trigger automatic alerts to a

mapping maintainer or map-managing authority.

1.5 Contributions

With respect to the aforementioned issues and challenges, the contribu-

tions of this thesis can be summarized as follows:

• We have introduced a novel framework for urban road layout esti-

mation. It allows us to exploit a broad range of information sources,

by translating them onto a common probabilistic basis. We demon-

strate the flexibility of the proposed framework by exploiting dif-

ferent detection pipelines, dealing with both urban and highway

scenarios.

• As opposed to other state-of-the-art works, our detection pipelines

are on-line procedures. It follows that we do not need an evalua-

tion of a whole sequence before including the detections into the

evaluation framework.

• To leverage existing knowledge in the context of driving scenar-

ios is essential. For this reason, every detection pipeline has been

tightly coupled with the OpenStreetMap service, allowing the sys-

tem to integrate priors into the evaluation.

• In order to enhance the ego-vehicle localization, we have proposed

the following detection pipelines:

– First, the effectiveness of the approach has been demonstrated

by integrating the cartographic map provided by the Open-

StreetMap service and limiting the vehicle position to stay on



1.6. Thesis Outline 7

the roads. We achieved excellent localization performances

with respect to state-of-the-art and comparable algorithms.

– We have integrated a pure-geometric pipeline able to take ad-

vantage of the building façades detection. Differently from

other state-of-the-art systems that hinge on image analysis,

ours does not require a training phase. This component allows

the framework to reduce both lateral and longitudinal localiza-

tion uncertainties in urban areas, usually afflicted by GPS lack

of precision due to so-called “urban canyons”.

– We have proposed an intersection detection pipeline able to

discriminate the road interconnection model leveraging both

images and cartography. Unlike state-of-the-art systems, our

on-line system does not require the whole sequence of images

up to when the vehicle is inside the intersection before starting

the computation.

– Towards obtaining an accurate lane-level global localization

in highway scenarios, we have introduced a component able

to leverage a line detection algorithm and the OpenStreetMap

road features. Combining these information sources, the sys-

tem is able to reduce localization uncertainties in highway sce-

narios allowing the system to cope with treacherous situations

arising from inaccurate standard GPS measurements.

1.6 Thesis Outline

The work presented in this thesis is organized as follows. In Chapter 2,

after a brief introduction to the history of autonomous driving cars, we

provide a survey of the underlying techniques for vehicle localization,

which are derived from both the robotics and the computer vision re-

search fields. Chapter 3 introduces the proposed road layout estimation

framework and the first three components that have been exploited to en-

hance the vehicle localization in both urban and highway scenarios. In

Chapter 3 we propose a novel on-line method for intersection detection,

while in Chapter 5 the presented algorithms are evaluated and critically

discussed. Finally, in Chapter 6 we present our conclusions along with

the future research perspectives that this work opened.
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Figure 1.3: Localization in a residential scenario. The localization framework is cur-

rently tracking 80 vehicle position estimates (depicted with the yellow cars), leverag-

ing both road graph (shown with red lines) and the building outlines data (green-cyan)

from the OpenStreetMap mapping service. The blue area overlayed with the build-

ing’s outlines represents our façades detections. In the bottom right, the components

of the intersection detection pipeline. Finally, the fuchsia and green track represent

respectively our best estimate with respect to the DGPS ground truth.



Chapter 2

Related Work

This chapter provides an overview of the existing state-of-the-art ap-

proaches for perception in the autonomous-driving scenario and, on the

basis of the existing literature and current challenges, we focus on the

main contributions of the proposed approach.

2.1 Autonomous Driving

The human ambition of having automated driving cars dates back to the

beginning of the past century, when in 1925 and 1926 the first driverless

vehicles were presented in New York and Milwaukee. Despite the Lin-

rrican Wonder and the Phantom Auto were controlled by radio signals

sent by other following vehicles and so were not autonomous, they were

a practical verification of the available technology at that time. A decade

later, during the 1939 World’s Fair, General Motors (GM) presented its

vision of the next future at the Futurama exhibition Figure 2.1b. Illus-

trating their opinion about the New Horizons, GM presented a new mo-

torway concept where distances between cars were maintained by au-

tomated radio control systems, and the curbs were allowing the drivers

in keeping the car within the proper lane, gaining safety concurrently

with high vehicle speed. Even though these first vehicles were mainly

bounded to experimental activities, the safety and optimization benefits

arising from removing humans from driving tasks were already clear. In

the next decades, research in vehicle’s automation included electronic

controlled highways and automated highway systems (AHS), with con-

tributions from both the academic and the automotive industry. How-
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ever, the technology behind this generation of automated vehicles was

far from the current approaches, because of the absence of any vehicle

autonomy.

With the technological advancements of computer vision, machine

perception and computation power, in the beginning of the 80’s the team

of the Bundeswehr University Munich lead by Professor Ernst Dick-

manns started the research in autonomous driving. One of the first mod-

ern vehicles equipped with on-board sensors and computer systems, was

a Mercedes Van called with the acronym VaMoRs (Versuchsfahrzeug für

autonome Mobilität und Rechnersehen), which was presented in 1986 in

Germany. It successfully performed a first autonomous driving experi-

ment on streets without traffic, traveling at speeds of 96 Km per hour,

limited only by engine speed over distances of 20 Km [26]. Approxi-

mately at the same time, the Navlab laboratory of the Carnegie Mellon

University proposed its first road navigation platform, Navlab 1 [27],

starting the research on intelligent mobile robots capable of operating in

the real world outdoors [28, 29]. Since then, complex algorithms con-

stantly increased the autonomy level of autonomous research cars and,

at the end of the EUREKA Prometheus project (1987-1995), the Dick-

manns’s VaMP vehicles showed the fully autonomous capability of lane

change on a three-way highway with normal traffic.

Comparable results were also achieved by the ARGO project of Pro-

fessor Alberto Broggi in the last years of the 90’s [30]. His team’s ve-

hicle drove the Millemiglia in Automatico tour, consisting in driving ap-

proximately 2000 Km along the Italian highway network [31], most of

times in full autonomous mode.

The aforementioned approaches were mainly focused on enhancing

vehicle autonomy in highway scenarios. The US Defense Advanced

Research Projects Agency (DARPA) promoted the Grand Challenges in

2004 [32] and 2005 to tackle more complex road conditions. These com-

petitions raised the interest of the robotic and computer vision academic

communities in applying their research to more complex and realistic en-

vironments. Although no competitor finished the first challenge, which

took place in 2004, in the 2005 edition the Stanley vehicle of the Stan-

ford University lead by Professor Sebastian Thrun, won the run achiev-

ing a 212 Km autonomous driving [33]; other four vehicles completed

the challenge. The competitions were held in off-road desert terrains

and required developments in both terrain perception, real-time collision

avoidance and vehicle control [33]. Two years later, in 2007, during the
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(a) The Linrrican Wonder, 1925 (b) The Futurama Exhibit,

World’s Fair 1939

(c) New Horizons, General Mo-

tors, World’s Fair 1940

(d) Firebird I Prototype (e) Firebird II, General Motors’s

Motorama exhibit in 1956

(f) Tower Control at Motorama

exhibit in 1956

(g) Prof. Dickmanns’s VaMoRs

Project, 1986

(h) Prof. Dickmanns’s VaMP

Project, 1994

(i) Prof. Broggi’s ARGO Project,

1996

(j) Stanley, the Grand Challenge

winner, 2005

(k) The Sandstorm during the

2005 Grand Challenge

(l) Boss, the Urban Challenge

winner, 2007

(m) The Google Self driving ve-

hicle

(n) Tesla Autopilot (o) The Uber Self driving vehicle

Figure 2.1: Progress in autonomous driving research from 1925 to 2016.
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third Grand Challenge [34], the agency increased the difficulty level of

the challenge and held a new driverless car competition in a simulated

urban scenario with emulated traffic. The race, known as Urban Chal-

lenge, required a new set of algorithms specifically tuned for urban-like

environments [33, 35].

In all the three DARPAs events, the focus was on controlling the ve-

hicle in a pre-defined environment, i.e., given a map and a concise plan,

the vehicles needed to safely drive to the goal understanding the nearby

environment using its on-board sensors.

In 2009, Google started its self-driving car project [36], bringing

together the most experienced engineers who had been working with

autonomous cars including Sebastian Thrun, Chris Ursom, Mike Mon-

temerlo and Anthony Levandowski from Stanford and Carnegie Mel-

lon. The company significantly pushed the boundaries of the researches

done for the past DARPA competitions, relying upon laser measure-

ments matched against pre-recorded maps, which were collected using

manually driven vehicles [37].

In the past years, the efforts concerning the development of intelligent

transportation systems (ITS) such as intelligent vehicles increased sig-

nificantly. Nowadays, a large number of academic laboratories as well

as established automotive companies, along with new innovative compa-

nies, e.g., nuTonomy, Tesla Motors, Uber Technologies etc., have started

their driverless car projects, and while Advanced Driving Assistance

Systems (ADAS) like auto-parking, lane-keeping or collision avoidance

systems are already available on the market as options, they get manda-

tory in the next decade [38] following a path similar to ABS/ESP sys-

tems, which are mandatory nowadays. Moreover, systems aimed at

improving security including Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication infrastructure have been proposed

and are likely to be the next forthcoming innovations.

2.2 Localization

The localization problem is a well-known issue in autonomous mobile

robotics and it has been tackled by using approaches arisen from differ-

ent research fields, not robotics-related only. From a technical perspec-

tive, the mobile robot localization problem “is the problem of determin-

ing the pose of a robot relative to a given map of the environment” [39].
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It follows that the first key aspect is related to the existence and the avail-

ability of the map in which the robot has to localize itself. A second but

of equal importance aspect is related to the environment perception. This

aspect includes the issues related to the specific sensor typology used to

perceive the environment. Starting from the latter concept and assuming

that we do not need to create a new map from scratch, a remarkable dis-

tinction between localization algorithms should be made, i.e., whether

the robot needs to perform a localization process in an indoor or outdoor

scenario. Since the environments have a strong impact on the map ty-

pology, the next sections present an overview of the existing mapping

approaches regarding the autonomous vehicle’s context.

2.3 Grid-Based Maps

The first and widespread map typology we consider is the occupancy

grid map. This kind of map stores a binary value inside each of its el-

ements, representing exclusively whether the space area element is oc-

cupied or not. Despite this trivial representation, these maps are com-

monly used in indoor mobile robotics because such environments allow

us to use 2D-3DoF maps and thus to simplify the feasible state-space

of the robot. Usually the state-of-the-art approaches [40, 41, 42], mainly

designed for indoor robotics, exploit this conjecture by mapping the en-

vironment to two-dimensional grid maps, which are then used along with

laser or sonar range finders to perform the localization. One of the ad-

vantages of this representation stems from the seamless integration of

this kind of sensor measurements.

Extensions of 2D grid mapping for robots working in non-flat ter-

rains were also proposed. In [44, 45] two-dimensional grid maps were

enhanced to store the height information of each space element. How-

ever, these maps, known as Digital Elevation Maps (DEM), do not allow

us to accurately represent vertical structures where multiple levels of

height are semantically relevant. These structures are quite common in

driving scenarios, e.g., bridges, tunnels, and multilevel parking lots. The

limitations of these approaches arise in the map generation phase, where

the stored height value is calculated averaging all the measurements of

a specific mapped area. Moreover, such average makes the localization

process harder, since the stored elevation may be significantly different

from the sensor measurements gathered during the localization phase.
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(a) Multi-Level Surface Maps from [43] (b) Full 3D voxel maps

Figure 2.2: The pictured depicts mapping examples using Digital Elevation Maps and

Multilevel Surface Maps [43] in 2.2a and full 3D voxel maps in 2.2b

To deal with the aforementioned environments the authors in [43] pro-

posed a new further enhancement by means of a representation known

as Multilevel Surface Maps (MLS-maps), depicted in Figure 2.2a. This

time, each element of the grid consists of a discrete list of surfaces as-

sociated with it. Such map representation was widely used in [46], and

permitted the authors to avoid complex representations of a full three-

dimensional map. In [47] the authors applied MLS-maps to solve the

localization problem inside a multilevel parking structure, introducing a

5DoF motion model that limits the z-value of the vehicle to the height

indicated within the map.

In spite of this restriction, a full 3D-6DoF motion model not rely-

ing on the structure of the ground surface was introduced in [48] and

depicted in Figure 2.2b. It is worth noting that the modeled motion

does not consider the interactions between the errors acting on its basic

components, introducing uncertainties on each single component of the

movement according to a velocity model. It has to be observed that the

independence between the single components of the pose is also com-

monly assumed in other works [49].

Finally, in [50] a full three-dimensional occupancy map model was

introduced to provide a volumetric representation of space, which is im-

portant for a variety of robotic applications including flying robots and

robots that are equipped with manipulators. This close our short review

with respect to grid-based maps.

Remarkable work using grid-based mapping for localization was in-
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troduced in [49, 51], where two-dimensional maps of laser scanners re-

flectivity values were stored, instead of occupancies values.

Although grid-based maps allow us to directly map the occupancies

of the scene objects into a location-based representation, the physical

scene-to-map associations put strict interpretation constraints. It can

be concluded that the lack of a higher semantic interpretation level ex-

presses the main underlying flaw of this map representation. As an ex-

ample, these maps can not deal with high-level concepts like road lanes

or street lines, except through an explicit position mapping, which it

is hard to achieve in real-world dynamic scenarios. Despite the limi-

tations, their real application strictly depends on the designated appli-

cation. Even though benefits may arise in enclosed areas, e.g., parking

lots, these maps can not deal with high-level concepts like road lanes or

street lines, except through an explicit position mapping, which is hard

to achieve in real-world dynamic scenarios.

2.4 Feature Based Mapping

Features maps represent a second class of maps, where the stored ele-

ments contain high-level properties of a feature as well as geometrical

terms. This map category allows us to combine qualitative and geomet-

ric clues, ensuring a suitable level of expressiveness for complex envi-

ronment representations, while keeping them open to further enhance-

ments. Even though the spectrum of the features included in these kinds

of maps varies according to the requirements, approaches considering

traffic scenarios present a definite trend that include elements to cope

with the traffic regulations. Lines, lanes, roads and interconnections be-

tween them are just few of the obvious concepts which can be found in

common urban maps. In this thesis, we perform vehicle localization by

means of the interpretation of the environment surrounding the vehicle,

which is then matched against an enriched cartographic map, retrieved

from on-line mapping .

2.5 Topological Mapping

The maps handled by well-established cartographic services are an im-

portant piece of information that can be exploited in the automotive-

related localization context. Even though no standard concerning fu-
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ture maps for autonomous driving cars is yet defined, these maps, ini-

tially designed for human use, represent an incredible source of infor-

mation that is nowadays also available in terms of on-line map services.

From a technical perspective, efforts should be dedicated on leveraging

the abundance of existing cartography as well as the forthcoming high-

definition maps such as [52], specifically designed for autonomous driv-

ing cars and next generation map-based ADAS systems [53]. Following

this motivation, in the last years authors have proposed a combination of

information coming from on-line mapping services like Google Maps,

HERE Maps, the collaborative OpenStreetMap or other Geographic In-

formation System (GIS) projects, to better exploit the massive number

of potential object classes and structures contained in the maps. These

services have been used as a priori knowledge of the 3D scene struc-

ture [19, 54, 55, 56], usually referred to as Scene Layout [57, 58]. Unfor-

tunately, even though we can expect good reliability from the upcoming

commercial maps, the lack of strict guidelines and data validation rules

often reduce the quality if the maps. To deal with missing or noisy infor-

mation, the authors in [59] propose to enhance the annotation of existing

roads and in [60] they also detect new roads, not yet mapped in Open-

StreetMap. Other works, aimed at enriching the map with additional

high-level concepts like lanelets have been presented in the literature,

see, e.g., [61]. Here the authors introduce a novel specification for auto-

nomous driving maps, which allows them to also include traffic regula-

tion rules. These elements are known as tactical information, grounding

on the OpenStreetMap service.

Apart from the works aimed at improving existing maps, valuable

contributions to the field came from the computer vision community,

where the semantic image segmentation of road scenarios has received

considerable attention [62, 63, 64, 65, 66, 67, 68]. These works com-

bine different information about the context by means of probabilistic

graphical models like Markov Random Fields or Conditional Random

Fields [69]. Although these approaches lead only to an image partition-

ing in disjoint and classified areas, the resulting interpretations can be

further exploited. As an example, the outcomes can be integrated, as

new features, in existing maps or even used to perform a better localiza-

tion by means of a semantic matching, rather a than purely geometric

matching like usually happens.
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2.6 3D Scene Understanding

For a better interaction with the surroundings, autonomous systems need

a semantically high level representation of the environment [20, 70, 71].

The introduction of semantics for recognized objects allow the research

community to go one step further with respect to the image based seg-

mentation. As an example, by including high-level clues about the real

world we may estimate the navigability boundaries of the surrounding

space or even a localization position by reproducing the human ability

of inferring the global structures and situations of an observed scene.

Many works have been proposed to solve the scene understanding

problem: from the simpler scene indoor understanding process by means

of single images, to the analysis of multiple images or sequences [64,65,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81], the problem has been tackled both

from the machine learning and the probabilistic perception side.

To recover the layout of indoor scenes by understanding its struc-

ture, geometric clues such as vanishing points were used, e.g., in [75,

82]. These algorithms usually rely on the Manhattan World Assump-

tion, i.e., the orthogonality constraint of scene planes. To deal with clut-

tered scenarios, the authors in [73] modeled the 3D area by means of

a cuboids representation, and generated layout hypotheses by sampling

geometric directions estimated by using vanishing points. In [76] Lee

et al.enhanced their previous works introducing volumetric reasoning,

which allows the authors to model the 3D interaction between the ob-

jects and the spatial layout. Authors in [79, 83] achieved state-of-the-

art results proposing a decomposition of the high order potentials used

in [73, 76, 84] by means of the new integral geometry concept. Note

though that the aforementioned approaches tackle the problem of under-

standing the indoor scene relying on single image analysis rather than

on video sequences. Moreover, with the exception of the works by Ur-

tasun et al. [83], most of other works do not take into consideration the

time performances. In [85, 86] the authors propose a Bayesian filter-

ing framework for dynamic visual understanding of the local environ-

ment. The idea behind their framework, which is also shared by the

work in [70, 80], and also in the work proposed in this thesis, is to drop

the hard Manhattan assumptions, the extensive learning phase, and the

graphical model approaches, in favor of a filtering approach, able to effi-

ciently integrate new evidence in order to generate, evaluate, and refine

3D layout hypotheses.
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Even though the approaches mentioned so far aim to reconstruct in-

door environments, a large amount of effort in the literature have been

focused on the reconstruction of outdoor scenarios. Similarly to what has

been done for the indoor context, the methods can be separated in two

groups. On the one hand, some approaches, aimed at estimating the lay-

out from single images, often rely on the Manhattan assumption [82,87]

or horizon and zenith lines [88]. In order to generate 3D models com-

bining surface reconstruction and object recognition, the authors in [89]

proposed a semantic scene analysis system, which introduced high-level

constraints in an explicit knowledge base implemented as a semantic net.

Pursuing the need of an effective scene understanding system, which

can reason about the interaction and relationships between objects, the

authors in [58, 90] proposed a framework to recover the surface layout

of a scene by means of multiple image clues, spatial support and deci-

sion trees classifiers, extending their work in [91]. Following the idea of

exploiting relationships between objects along with physical, mechani-

cal, and geometric constraints, the authors in [92] extended the pioneer-

ing blocks-world concepts proposed by Roberts [93], by introducing a

search strategy to determine blocks configurations consistent with the

input image. From a technical perspective, the algorithm works by plac-

ing hypotheses over the valid configurations and then scoring them by

weighting mechanical and geometric properties of each candidate con-

figuration. Similar contributions were also achieved in [94] by Saverese

et al.Although the original algorithm does not exploit video sequences

nor explicitly models the features typically seen in driving scenarios,

in [95] and [68] the authors introduced respectively visual semantic for

street level imagery and reconstruction of 3D semantic models from ur-

ban environments. An alternative representation of the 3D space is also

defined in [96,97,98], where a stixel-world is introduced, i.e., a represen-

tation encoding the obstacles and free space of the current traffic scene.

In [99] the authors propose a semantic segmentation method that does

not rely on appearance-based descriptors, although it leverages 3D point

clouds derived from a structure from motion (SfM) approach, onboard

a moving vehicle. In [100] the authors propose leveraging geographical

priors to achieve a richer outdoor scene understanding by jointly rea-

soning on 3D object detections, vehicle pose estimation, and semantic

segmentation. The authors in [21, 101] address the problem of segment-

ing urban street scenes into semantically meaningful classes, e.g., road

surface, buildings, road markings and cars, leveraging temporal integra-
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tion between consecutive video frames and focusing on the upcoming

road section and the presence of common objects.

Keeping in mind the integration of dynamic objects and typical traffic

scenarios, the authors in [102, 103] developed a reliable system capable

to infer the geometric and topological properties of intersections, as well

as the activities occurring nearby them, by means of a generative model

and reversible jump Markov Chain Monte Carlo schemes that reason

about static and dynamic objects. Furthermore, the scene understanding

problem and high-level semantic segmentation have also been tackled

in [104] and [21], where traffic images are analyzed in order to infer the

road topology and the existence of an a-priori defined set of objects, as

well as traffic patterns.

Despite the fact that the algorithms mentioned above were designed

to reconstruct the best layout configuration of the scene, they do not di-

rectly exploit the detected scene objects for any specific purpose relative

to the autonomous driving domain. In this thesis, we aim to take advan-

tage of the latest advancements of scene understanding algorithms (e.g.,

road segmentation and 3D interpretation of crossing areas and buildings)

to achieve a good localization accuracy with respect to the geo-localized

entities available in both urban and highway areas.

2.7 From Scene Understanding to Urban Localization

In the past years, the efforts for the development of intelligent vehicles

increased significantly. Systems aimed at improving security, includ-

ing Advanced Driver Assistance Systems (ADAS), Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) communication, were intro-

duced. Many of the ADAS systems rely on object detection and tracking

or on scene understanding techniques. They all require an accurate lo-

calization within a known map [9], in addition to a rich description of

the surrounding scene in terms of pedestrians, cars, traffic signs, road

lanes, etc. To deal with the localization problem, researchers from both

computer vision and robotics developed different approaches. A com-

mon goal is to achieve a good localization accuracy, despite the lim-

itations of Global Navigation Satellite Systems (GNSS), which is fre-

quently unreliable, degraded or full absence of signal because, e.g., of

urban canyoning. Some authors already proposed to leverage informa-

tion from mapping services like Google Maps, HERE Maps or the col-
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(a) OpenStreetSLAM, Floros et al. 2013 [11]

(b) Global city-wide localization by means of vi-

sual odometry and road maps, Brubaker et al.

2013 [105]

(c) Map-aided localization, Miller et al. 2011

[106]

(d) Localization using visual odometry and digi-

tal maps, Parra Alonso et al. 2012 [9]

Figure 2.3: Progress in vehicle localization, leveraging topological road graphs such as

OpenStreetMap.

laborative OpenStreetMap project. So far, the most exploited informa-

tion is the road graph, which gives both topological and metric (known

as topometric [12]) clues to localization. The road graph is used to nar-

row the localization uncertainties, by zeroing the estimated distance be-

tween the vehicle and the nearest road segment by means of a lock-on-

road procedure [9,107], as well as ad-hoc schemes in intersection areas.

In [108] the authors leveraged the metric properties of maps and a vi-

sual odometry input, exploiting a chamfer matching technique to align

the path traveled by the car to the road network. Similarly, the authors

in [109] extended their previous works [110], and replaced the visual

odometry input with the readings from the Anti-block Braking System

of a common vehicle; moreover, they applied a tightly-coupled fusion

strategy to integrate the GNSS measures. Similar results were achieved

in [54,111,112]. Lu et al. [113] perform localization by coupling vision-

based detection of lane markings with open source map databases. Re-

cently, Larnaout et al. [16] proposed to use the building models pro-

vided in OpenStreetMap as geo-referenced antennas in order to correct

the GPS inaccuracies. Additional contributions, e.g., [114], analyze the

behavior of the tracked vehicles in order to understand the intersection
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structure. Beside the road graph, the authors in [115] propose a method

capable to perform localization leveraging on-board images captured by

a common mobile phone and exploiting Google StreetView imagery.

Despite its coarse accuracy, i.e., they do not achieve accurate in-lane

localization, maybe one of the most impressive result on localization is

presented in [105], where the visual odometry is exploited to localize a

vehicle without any GPS prior in more than 2000 km of driving roads in

just a few seconds. A technologically different approach not using im-

agery but laser sensors, was recently presented in [19]. Here the Open-

StreetMap data is again used as a prior information within a supervised

classification approach, in order to classify road and non-road readings.

A complementary category of approaches tackle the problem of un-

derstanding the position of the camera in terms of global localization,

given single images. These methodologies, known as location or place

recognition [116, 117] and binary codes extensions like [118], aim at

recognizing locations from their appearance rather that exploiting con-

secutive images taken from moving platforms.

Even though the object perception field spans heterogeneous targets,

this thesis, starting from road appearance clues, to the presence of other

vehicles, leverages the most distinguishing features to infer the structure

of urban and highway settings, i.e., their main structure. The detected

features are used in order to reduce the localization errors, by exploiting

their pose in the common reference frame in OpenStreetMap.

2.8 Sensing the Environment

Autonomous vehicles hinge on advanced algorithms for object detec-

tion and tracking, for self-localization, and vehicle control. Although

each of these components is essential to safely plan the vehicle actions,

all such algorithms concurrently support the main challenge for auto-

nomous vehicles, i.e., understanding of the surrounding environment.

Consequently, the perception and the interpretation of the objects and

entities within the scene is crucial, since a proper interpretation could

prevent the vehicle from running into potentially treacherous situations.

Even though multiple domains may benefit from accurate 3D urban

models, such as the entertainment or digital mapping domain, the chal-

lenge of building them automatically has been tackled by researchers

from both robotics and computer vision fields, and it is strongly re-



22 Chapter 2. Related Work

lated to the scene understanding process and its geometric reconstruc-

tion [15, 68]. From a technical perspective, the approaches to scene un-

derstanding can by distinguished in two main categories, depending on

the sensing devices that are used to perceive the scene.

The first category rely on the highly accurate laser scanners [119,

120, 121], and external data sources like cartographic maps, combined

with GNSS data [9, 16, 19, 108]. An interesting approach based on laser

scanner for exploiting the building outlines in the well-known SLAM

problem, is presented in [122]. Although the algorithms relying on laser

scanners may benefit from the great accuracy of the measures, their ap-

plications to the automotive market are still hampered by the equipment

price, even though a lot of innovation is happening in this field. Com-

panies like Ford and Baidu have recently signed an agreement to help

the development of cost effective laser scanners sensors1. On the other

hand, the problem can be tackled by leveraging visual clues, in order to

assemble a good feature set, which is then used to train different classi-

fiers. Although in the recent years heterogeneous techniques, including

Conditional Random Fields (CRF), Decision Trees, Description Logics

or Deep Neural Networks [101, 123, 124, 125, 126, 127], have been used

to tackle the scene understanding problem, it still remains a remarkable

challenge for the research community, as proved in recent works such

as [13, 16, 19, 128].

In both cases, the researchers have focused on approaches that allow

the detection of both static and dynamic objects of the reconstructed

environment.

Even though, conceptually, object perception spans heterogeneous

targets (from road appearance to other vehicles), we focus on the most

distinguishing features of two typical driving scenarios, i.e., highways

and urban areas.

2.8.1 Buildings

In the context of urban driving scenarios, the understanding of the scene

near a vehicle is a complex task, due to the nature of the environment,

i.e., presence of a large degree of clutter. Dense traffic circumstances

as well as the city infrastructure elements can further complicate the

scene understanding process. In order to effectively tackle this task, a

1http://spectrum.ieee.org/cars-that-think/transportation/sensors/ford-and-baidu-invest-150-million-in-

velodyne-for-affordable-automotive-lidar

http://spectrum.ieee.org/cars-that-think/transportation/sensors/ford-and-baidu-invest-150-million-in-velodyne-for-affordable-automotive-lidar
http://spectrum.ieee.org/cars-that-think/transportation/sensors/ford-and-baidu-invest-150-million-in-velodyne-for-affordable-automotive-lidar
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common approach is to leverage methods for scene segmentation and

interpretation.

Although the research has so far mostly been focused on approaches

that leverage intrinsic road features, including ground plane and surface

orientation analysis [58], together with road markings, lane, and curbs

identification [119,129,130], an interesting, yet challenging, opportunity

in the context of urban areas arises from the exploitation of the intrinsi-

cally static elements, e.g., the buildings. Regarding this specific domain,

the existing attempts vary according to the different applications.

A comprehensive survey of the possible approaches is available in the

excellent work of Musialski et.al. [15]. To deal with this complex task,

advanced techniques like Conditional Random Fields (CRFs) [131] or

decision trees based algorithms are often used to learn appearance-based

models of geometric classes [58].

In [132], the authors propose to extract the 3D properties of the build-

ings by inferring the façade planes from single images and leveraging

the properties of straight lines and vanishing points. In [14,128], the au-

thors propose a probabilistic discriminative model called BMA, where

descriptive features are attached to a set of aggregated regions. By means

of a twofold consideration, the authors try to answer the following ques-

tion: Is this pixel part of a building façade, and if so, which one? Firstly,

the BMA approach is used to label the pixels in the image. Then a set

of candidate planes is generated by sampling the image and performing

Principal Component Analysis (PCA) to approximate the local surface

normal at the sampled points. Finally, both information are incorporated

by means of a Markov Random Field, allowing the authors to answer the

aforementioned question.

Moreover, following the semantic scene analysis system presented

in [89], the authors proposed to model 3D Buildings using High-Level

Knowledge [133].

Although many authors have put significant efforts in detecting build-

ings even from a single image, it is clear that inference gathered from an

in-vehicle stereo image stream allows us to place object hypotheses, i.e.,

3D building models, in a way that can be corroborated by temporal inte-

gration [71].

However, even though the aforementioned approaches yield good re-

sults, our goals are slightly different and closer to the robotics domain.

One of the most important problems that may benefit from a high-level

interpretation of the scene is the self-localization problem. It repre-
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(a) 3D Modeling with con-

straints, Grau 1997

(b) Planar Surfaces in Outdoor

Urban Environments, David

2008

(c) Vision-based self-

localization with Buildings,

Himstedt et al. 2012

(d) Is the pixel a building-pixel?

Corso 2008

(e) Surface Layout from an Im-

age, Hoiem et al. 2007

(f) Improving VSLAM 3D

Building Models, Larnaout et

al. 2014

(g) 3D Building Map for Lane-

Level Localization, Gu 2015
(h) 3D Point Clouds to 2D

Maps, Ni et al. 2013

(i) Geometric Urban Geo-

localization, Bansal et al.

2014

Figure 2.4: Progress in building detection, using different approaches.

sents a critical task in every autonomous system [40] and this holds true

even more in the context of autonomous transportation systems, where

slightly erroneous positions and orientations of the vehicles could have

a strong impact on the whole system safety.

Many image-based approaches, such as the one proposed in [116],

are closely related to place recognition rather than to metric localiza-

tion. Nevertheless, in the last years, a number of approaches, lever-

aging different cues like cartographic [134, 135, 136, 137] and building

maps [9,12,18,108] have been proposed to compensate the lack of met-

ric precision and reliability of the GNSS receivers. Despite the achieved

outcomes, an accurate lane-level localization is still a challenging task

to achieve.

In [17] the authors tackle the problem of geo-locating images taken

from moving vehicles using only basic geometric features of the build-

ings (e.g., roof-line edges). In [13] 3D laser scan readings are pro-
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cessed with a Virtual Scan method [138] before being matched against

the OpenStreetMap landmarks. A similar approach based on laser read-

ings was developed in [139] where the authors do not rely on a mapping

service, but they rather leverage the aerial imagery to extract the building

edges, which are then matched against the upper edge of the buildings

detected with a laser scanner. In [16] the authors propose a “Differential-

GPS” based on building models. The algorithm exploits a GPS correc-

tion module in order to improve a Visual Simultaneous Localization and

Mapping (VSLAM) procedure.

In this thesis, we propose to leverage the façade’s geometry of the

buildings in order to enhance the localization of a urban vehicle. In con-

trast to approaches aimed at explicitly detect façades using image pro-

cessing techniques (e.g., using symmetry or texture analysis or pattern

recognition), our approach relies on stereo vision from image pairs only.

2.8.2 Road Intersections

The first studies about the detection and modeling of the road intersec-

tions date back to the end of the ’80s, with the works of Kushner and

Puri [140]. The authors proposed to detect the intersection geometry by

matching the detected image road boundaries with a predefined intersec-

tion model derived from an a priori map database. A second approach

using laser range finders was also proposed in their work. Although ap-

proaches using high-end laser scanners like the Velodyne HDL-series

benefit from accurate measurements, achieving state-of-the-art results in

both intersection [141] and roundabout recognition [55], their applica-

tion to the real automotive industry is still hindered by the cost. On the

other hand, vision-based system were introduced, e.g., in [23, 142, 143],

where the authors exploit digital maps in order to generate road and in-

tersection models that can be used by model-based tracking algorithms.

Recognizing intersection using on-board imagery only was defined

as a hard problem, see, e.g., [22,23,144]. Most algorithms rely on struc-

tured road detection, where features like borders or line detections [144]

are exploited in order to determine a high-level classification of the ge-

ometry of the road ahead [24]. Although this may be an effective ap-

proach for vehicles traveling on ideal and loosely crowded roads, in the

context of urban scenarios it simply fails because of the nature of the

assumed environment, i.e., the presence of a large degree of clutter. Be-

yond these initial attempts, authors in [22] proposed a method that hinge
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(a) Approach by Geiger, vision based
(b) Approach by Hummel et al., description

logics

(c) Approach by Rasmussen et al., vision

based

(d) Approach by Ess et al., vision based

(e) Approach by Zhu et al., laser based,

2012
(f) Approach by Zhang et al., laser based,

2015

Figure 2.5: State-of-the-art approaches for intersection detections. While laser based

approaches leverages geometric clues, vision algorithms mainly rely on pixel appear-

ance and inference schemes.
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on road-surface detection, which is evaluated using color classification

and road typology matching. They introduced an intersection model in

the SCARF system that even works in case of degraded surfaces, i.e.,

with missing lane markings or in difficult shadow conditions like in Fig-

ure 2.6. In [23], the authors added a geometric model of the lane struc-

ture so as to specify the lane width and the distance between the road

junctions. Their model is based on the assertion that even a rough inter-

section model can significantly reduce the uncertainty over the longitu-

dinal position, which is also a cornerstone of our work. Many of state-of-

the-art algorithms tackle the road intersection problem as a by-product of

a more complex scene understanding scheme. Moreover, even if the ob-

ject classification results were promising, the outcome of the intersection

identification highlighted the presence of several problems, in particular

with the classification of the different types of junctions. Approaches

like these in [57,58,101,145] are closer to our approach. In these works,

the authors used both CRFs to detect street scenes and surface layouts, as

well as temporal integration schemes to take advantage of the coherence

between the road models computed in consecutive frames achieve stable

temporal detections. Andreas Geiger’s dissertation thesis [20] may be

considered one of the most exhaustive works on intersection detection.

The author extracts information about the intersections tackling the full

layout interpretation in a probabilistic fashion, and exploiting video se-

quences from 5 to 30 seconds in length. The system leverages vehicle

tracklets, vanishing points and semantic labels, road parameters as well

as scene flow by means of a probabilistic graphical model (PGM) which

allows the algorithm to cope with complex situations not discernible by

single detectors. Notwithstanding the excellent results achieved, the ap-

proach shares with the aforementioned works the off-line strategy, i.e.,

they all reason about the intersection geometry only after a first image

sequence has been processed. Conversely, in this work we propose an

on-line detector of road intersections that does not require the whole

sequence of images, i.e.it works on-line, up to when the vehicle is in-

side the intersection. We then use the resulting output to disambiguate

the treacherous localization circumstances arising in typical urban sce-

narios, by means of matching the detected crossing topology with the

OpenStreetMap data.
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2.8.3 Road Features Detection

One of the major challenges for high-level algorithms is related to the

detection of the road surface. Achieving a good road surface detection is

crucial since it is the basis for more complex algorithms, e.g., navigation

and vehicle control, but its detection is usually limited by the signifi-

cant amount of clutter that is usually found along the roads. On the one

hand, vanished road markings, unusual or specific weather conditions,

or even light variations may complicate the road surface detection, as

depicted in Figure 2.6. On the other hand, the visibility of the road-

way may be frequently hampered by the presence of other vehicles, thus

requiring other considerations to solve the problem. From a technical

perspective, the approaches can be distinguished basing on the sensor

used to perceive the road surface. Even though the approaches relying

on laser scanners, which are mainly used to detect road limits and mark-

ings, are able to detect obstacles up to 100 meters with a 360° field of

view, vision-based algorithms may outperform them in the perception of

the road appearance. Laser scanners can be characterized by the num-

ber of concurrent acquiring layers.Despite single layer laser scanners are

normally used to detect obstacles in the vehicle’s surrounding, authors

in [49, 146] showed that road features can be also detected and used in

order to efficiently localize a vehicle. Rather than using the range mea-

surements only, they accumulate multiple reflectivity readings over time,

generating a swathe of measurements that are used to match against a

prior survey. In these approaches the laser scanners sensors are mounted

downwards in order to detect the ground plane, and a vehicle motion

compensation is required to correctly generate the representation of the

road surface from the data gathered from by the sensors. Moreover, the

reflectivity information can also be used to retrieve information about

the road markings. Besides single layer laser scanners, solutions with

4, 8, 16, 32 up to 64 layers can be found on the market. Also these

high-performance sensors yield extremely accurate 3D reconstructions

of the surrounding environment, which can be used for disparate pur-

poses that span from the curb detection to the surface and road mark-

ings [141, 147, 148, 149, 150, 151, 152, 153].

On the other hand, algorithms relying on visual input can potentially

leverage the huge amount of information contained in images. Regard-

ing common driving scenarios, the different road typologies existing

make the surface interpretation a hard task. Since the road appear-
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(a) Sub-optimal road surface con-

ditions

(b) Partially faded or hidden lines (c) Faded lines

(d) Totally faded or non existent

lines

(e) Bad illumination or weather

conditions

(f) Shadows issues

Figure 2.6: Typical issues in road markings detection context.

ance may vary in many ways, as depicted in Figure 2.6, the different

approaches usually tackle the issue as a segmentation problem, lever-

aging different color spaces [154], pixel intensities [155], texture [156]

and other considerations including road markings identification [157] or

even 3D layout configurations integrated over time [57]. In [158] the

authors exploit a hierarchical method that use Gaussian Mixture Mod-

els (GMM), super-pixels and the GrowCut [159] algorithm for image

segmentation. The results are then refined by means of a Conditional

Random Fields [69] approach, which allows the authors to include road

shape priors and thus a more robust detection. Super-pixel approaches

were extensively used also in [160]. To better deal with the shadows

and the variability generated by lighting conditions, the authors in [161]

introduce a shadow-invariant feature space and a likelihood-based clas-

sifier, managing to achieve real-time performances in a per-frame basis.

In order to cope with faded or not existing road markings and discon-

tinuous or irregular curbs, the authors in [162] propose to exploit the

combination of boundaries detections from the gray-level images with

the color information of the captured image. The authors in [145], ex-

tending their previous work [163], propose to introduce road geometries

(called road shape models) for road detection, exploiting temporal co-

herence and scene analysis. Similar attempts were discussed in [164],

where road shape priors were introduced within a graph-cut scheme. An

interesting yet effective consideration that may enhance the road surface

detection stems from prior information. This support information, along
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with a good localization, can be used to compensate the contradictory or

treacherous situations that may arise from cluttered or compromised im-

ages. The authors in [165] suggest decoupling the segmentation process

from the road-edge estimation using prior road models to safely navigate

at intersection level. In [56], the authors propose to obtain road priors

from the OpenStreetMap service.

One of the main disadvantages arising from the topological mapping

services like OpenStreetMap consists in the coarse accuracy with respect

to the road segments. Despite accurate statistics are not usually provided,

nowadays these services can not provide high-levels of accuracy, e.g., 10

cm or less [2]. Moreover, due to the collaborative nature of the project,

together with a lack of automatic testing and validation procedures, the

precision is not consistent within the database and, as an additional con-

sideration, the alignment between the road graph and satellite imagery is

not reliable in all areas.

Interesting approaches try to solve this problem by means of satel-

lite imagery parsing. For an exhaustive survey of state-of-the-art ap-

proaches, which are usually related to the photogrammetry field, the

reader is referred to [166]. Regarding the robotics and computer vi-

sion fields, former attempts addressed only the extraction of the road

areas [167] although the most interesting works synergistically exploits

mapping services or GIS projects. On the one hand, the authors in [59]

propose to segment road regions leveraging aerial images and supervis-

ing the process using publicly available road vector data, but their ap-

proach does not update the GIS database. On the other hand, the authors

in [60] propose to enhance the OpenStreetMap road graph by including

information about road width and road segments centerlines. These en-

hancements are extremely valuable in the context of vehicle localization,

since errors in road centerlines represent the most common problem in

approaches that use this feature as the main clue to perform localization.

The same authors extended their previous work including both aerial and

ground imagery [168], introducing a fine-grained road semantics that in-

cludes lanes, sidewalks and parking lots. Pursuing lane-level localization

objectives, the authors in [169] propose to exploit the objects present in

the vehicle’s surrounding and to describe the probabilistic dependencies

between the object measurements by means of a factor graph model.

Similar conclusions result from the work in [7], where Histogram of

Oriented Gradients are used in order to align the images acquired from

a front facing camera, and thus improve the localization of a vehicle.
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Although the literature present a large number of contributions dealing

with the interpretation of road images including approaches based on

Markov Random Fields (MRF), Conditional Random Fields (CRF) or

Convolutional Neural Networks (CNN), in the context of vehicle local-

ization, additional high-level interpretations including, but not limited

to, ego-lane detection may assist future navigation systems. For exam-

ple, precise lane localization may help ADAS systems to recommend

lane changing to human drivers. To deal with ego-lane estimation the

authors in [170, 171] propose systems able to perform lane localization

respectively in highway and urban scenarios, exploiting boosting classi-

fiers and particle filtering approaches. A similar research was performed

by [172], where a multiple evidence from a visual processing pipeline

was combined within a Bayesian Network approach. With respect to the

lane detection problem, the first pioneering approaches were achieved

by Prof. Dickmanns [4], who exploits a 3D road representation model

by means of clothoids curves and obtained with Kalman filters [173].

Besides color and texture, which are not always discriminative in terms

of where the car can actually drive, road boundaries and lane markings

are the main human perceptual clues [8]. These two elements may be de-

tected using monocular vision, stereo vision, or even laser scanners sen-

sors (leveraging reflectivity information). On the one hand, the main ad-

vantages of the laser scanners sensors stem from their active light source,

which make the sensors less dependent from shadows and darkness is-

sues, yet generating flawless distance measurements useful for curb and

road shoulder detection. On the other hand, since road markings are

designed to be visible by humans, vision algorithms, and in particular

stereo systems, may take advantage from typical visual clues including

different color-space transformations and 3D reconstruction capabilities.

Unfortunately, considering that illumination issues as well as cluttering

and marking irregularities could make the road marking identification

hard, image pre-processing and road-model fitting procedures are re-

quired in order to achieve satisfying performances. Apart from these

peculiar cases, vision-based approaches are nowadays cost-effective so-

lutions in the automotive industry. For a comprehensive review of road

and lane detection methods, the reader is referred to the excellent works

in [8, 174, 175]. In this thesis we focus our attention on the number

of lanes and the road width features, which are then matched against

the information retrieved from the OpenStreetMap service. Moreover,

we present an ad-hoc filtering scheme to handle the unavailability issue,
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allowing us to refine the position of a vehicle with respect to a hypothe-

sized on-road position.

2.9 Conclusions

In this chapter, we have presented a review of the state-of-the-art re-

garding scene understanding methodologies that can be used to perform

robust vehicle localization, starting from the simpler robot-localization

problem up to the integration of specific contextual clues usually avail-

able in driving scenarios.



Chapter 3

Ego Vehicle Localization

In this thesis, we address the problem of estimating a configuration of

common road features (e.g., buildings, intersections, road typology and

related properties) within the perceived environment, by means of a flex-

ible probabilistic framework for outdoor scene understanding. The con-

figuration is then used to improve the ego-vehicle localization in typical

driving scenarios, including urban areas and highway contexts, as de-

picted in Figure 3.1.

The proposed approach allows us to exploit a broad range of infor-

mation sources, by incorporating them onto a common probabilistic ba-

sis. This range spans different physical sensor types (e.g., cameras, laser

scanners, GPS, proprioceptive sensors), and a disparate set of virtual

sensors, i.e., software components that can provide useful and pertinent

information (e.g., topometric maps, dimensions and appearance of build-

ings, etc.).

The chapter is organized as follows. Section 3.1 provides a detailed

description of the proposed framework, which led to the publication of

the work A framework for outdoor urban environment estimation [54].

An early working example of this approach is provided in Section 3.2,

where an application to the vehicle localization problem in urban envi-

ronments is suggested. So as to refine the achieved localization results,

Section 3.3 discusses how to enhance the localization estimate by lever-

aging a pure-geometric building detector module, which was presented

in Leveraging the OSM Building Data to Enhance the Localization of an

Urban Vehicle [176]. Finally 3.4 reports how to integrate road properties

like the with and the lane number inside the overall evaluation approach.



34 Chapter 3. Ego Vehicle Localization

Figure 3.1: Example result using the proposed framework on run

2011 09 30 drive 0018 of the KITTI dataset, and the corresponding OpenStreet-

Map road network. The red path is the GPS-RTK and plays the role of ground truth.

In green, the localization results of our framework.

3.1 The Road Layout Estimation Framework

Autonomous systems require an accurate understanding of the surround-

ing environment in order to safely plan their actions. For intelligent road

vehicles one of such fundamental understanding concerns the pose of the

vehicle, called localization. With respect to the literature mentioned in

the previous chapter, the probabilistic framework proposed in this thesis

presents some significant differences. On the one hand, other works fo-

cus on solving the localization problem leveraging a set of sensor types

defined a priori, i.e., at design time. On the other hand, our probabilistic

framework is designed to be flexible so to allow us to exploit the infor-

mation generated by any kind (physical or virtual), and any number of

sensors, thus increasing the number of features contributing to theevalu-

ation of the posterior probability of the vehicle pose. Our first claim is

thus the easiness of changing the inference structure of the framework,

i.e., the type and number of the sensors and the geometric and semantic

relationships between them in an on-line fashion. This pattern has been

derived from the successful development for indoor scene reconstruction

in [80] [81], although a complete generalization and extension of the ap-

proach is here introduced. From a technical perspective, the approach

relies on the well-known bayesian particle filtering technique [39, Chap-

ter 4], which allows us to keep track of a whole set of hypotheses, we
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Figure 3.2: Proposed Road Layout Estimation Framework schematics. The inputs to

our framework were the mainly sequences from the KITTI dataset and the associated

OpenStreetMap road network. We also used the LIBViso2 [177] library to calculate

the odometry displacements.

call Layout Hypotheses –LH–. This approach represents a step towards

a more complex outdoor urban scene understanding system, meant to

model the surrounding scene layout by means of Layout Components –

LC–, each being generated by processing the sensors data with higher

level detectors. The system enables us to approximate the posterior

probability distribution, i.e., a distribution over the possible configura-

tion of the recognized features, which are then the model of the vehicle

surroundings. In this thesis, we leverage the sensor fusion capabilities

of the proposed system for the purpose of robust vehicle localization.

Differently from the previously mentioned approaches for localization

based on particle filters, here the particle states are enriched by layout

components, in addition to the 6DoF pose coordinates. The main insight
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behind the proposed architecture is that different information from dif-

ferent sources may be available at different frequencies, may be absent

for some periods of time, and may even only be useful in specific situ-

ations. It follows that, in contrast to state-of-the-art methods where all

the sensor outputs must be available to perform the evaluation, e.g., they

are all part of an a priori interaction scheme, in the proposed framework

each sensor is allowed to contribute to the scene understanding process

as its information becomes available. In other words, the importance fac-

tor of the particle filtering scheme takes into account only the available

information, which is dynamically updated as sensor outputs are gath-

ered by the framework. Conceptually, no sensor is actually essential, yet

all concur to the improvement of the interpretation quality and accuracy,

each sensor being allowed to both bring an independent contribution, as

well as be part of an interaction scheme. The structure of the proposed

framework is depicted in Figure 3.2.

In this chapter, we show the flexibility of the proposed Road Layout

Estimation framework as applied to the localization problem in urban

autonomous driving scenarios, synergically exploiting the information

provided by physical and virtual sensors.

3.1.1 Layout Hypotheses

The core of the proposed framework relies on the Layout Hypothesis

concept, which is a comprehensive representation of the vehicle state, in-

cluding a 6DoF localization pose together with a classification of the sur-

rounding scene. To comply with the probabilistic requirements, i.e., to

handle the sensor uncertainties, we propose a multi-hypotheses scheme

in which every Layout Hypothesis corresponds to a candidate represen-

tation of the scene. In our work, given a whole set of Layout Hypoth-

esis, we tackle the density estimation problem using a straightforward

weighted average scheme, relying on the score of each Layout Hypoth-

esis. Each Layout Hypothesis consists of the following structure:

• The vehicle state in terms of its 6DoF pose and its time derivatives.

• The vector of Layout Components, i.e., the geometric/semantic

models associated to scene elements.

• A value denoting the score of the layout, i.e., an estimated value

of the likelihood of the Layout Hypothesis, generated by a specific
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scoring function that takes into account the likelihood of each sin-

gle layout component as well as of their interactions.

• A motion model, which describes how the hypothesis evolve in

time.

The Layout Components are the core of the scene understanding pro-

cess, and they are essential for both the modularity of the scene repre-

sentation and for the probabilistic evaluation of the Layout Hypothesis.

In the context of intelligent road vehicles, typical scenes could present

static elements like road markings, traffic signs and lights, buildings and

crossings, etc., as well as dynamic objects such as pedestrians, other ve-

hicles, or similar entities. The Layout Components come into life when

detected by external modules, i.e., implementations of machine percep-

tion algorithms, which process sensor streams to provide the component

data to the system. Every instance of Layout Component lives indepen-

dently from all the other Layout Components, whether being part of the

same Layout Hypothesis or not. Its software implementation provide

the functions to calculate both its own likelihood, i.e., its contribution to

the overall score of the scene, and the evolution of its state. The main

advantages of the proposed choices are the following:

• The proposed structure gives a high degree of independence in the

evaluation process. Since Layout Components are not required but

they actively contribute to the overall score of the hypothesis, the

evaluation process of the whole layout hypothesis could take into

account only a subset of them.

• The particle filter approach allows us to handle multi-modal distri-

butions. In the specific case of the localization problem it follows

that we can draw samples from the whole state space, i.e., the com-

plete road graph of a city, and then efficiently track the hypotheses

up to a correct localization that results from the detection of a new

road feature not detected during the initialization phase.

• The logical separation of the detector from the Layout Components

validation process allows us to exploit external detectors introduc-

ing high-level concepts within a Layout Component. As an exam-

ple, a state-of-the-art line detector can be employed to probabilisti-

cally estimate the ego-lane within a multi-lane way.
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• Even if the framework achieved near real-time performances in

specific configurations, even on a single threaded machine, the de-

signed architecture provides a straightforward way to speedup the

overall system.

Finally, it is important to notice that the from a technical perspective

the system could even be provided with randomly hypothesized compo-

nents, if combinatorial explosion could be neglected. Nevertheless, it is

clear that having a suitable object detector would allow the system to

avoid an unnecessary waste of resources.

3.1.2 Hypotheses Initialization and Evolution

As observed from an autonomous vehicle in a typical driving scenario,

the scene appearance changes both because of the vehicle motion and

because of the dynamics of the moving objects in the scene.

Layout Hypotheses are generated grounding on the fair assumption

that vehicles travel on roads. The hypotheses are allowed to evolve over

time, to refine the quality of their initial description, and to contribute to

the belief of the interpretation of the observed scene.

As a first step to cope with the time evolution, each Layout Hy-

pothesis has to have means to estimate the motion with respect to the

observed scene. Given the existence of different approaches to mea-

suring the observer motion (e.g., wheel odometers, visual odometers,

etc.), we designed the framework so as to cope with different motion

estimation sources. Each layout hypothesis has therefore an associated

motion model, which integrates such measures into the hypothesis sub-

state. Moreover, since external modules (e.g., object detectors from im-

ages) might run orders of magnitude slower with respect to the update

frequency of the Layout Hypotheses, all the Layout Components that

cannot be updated, i.e., those components that have not received a new

input from the external detectors, are propagated taking into account

both the observer motion, i.e., the Layout Hypothesis motion, and the

specific motion of each moving scene element, i.e., the Layout Com-

ponent motion. This expedient allows us to keep the update frequency

independent of the detection modules, therefore preserving the real-time

requirements.
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3.1.3 Layout components

The vector of Layout Components associated to each Layout Hypothesis

contains instances of the scene elements hypothesized by the external

detectors. Since different typologies of scene elements provide higher

level semantic interaction cues, the interpretation quality benefits from

a rich and heterogeneous set of Layout Components, as that may help

in disambiguating complex scenarios. The proposed framework offers

several templates to easily integrate new scene components, and new

ones can be straightforwardly defined. From a technical point of view,

there are two main routines for each type of layout component software:

• propagateComponent: this routine composes the Layout Hypoth-

esis motion with the component motion model, optionally adding

a perturbation term to the motion. If a component does not have

its own motion model, this function simply updates the component

state using the information provided by the Layout Hypothesis, i.e.,

uses the estimated observer motion of the hypothesis to generate

a new component state. A detailed example is presented in Sec-

tion 3.2.

• calculateComponentScore: this second routine evaluate the likeli-

hood of the Layout Component instance given new evidence from

the sensors.

3.1.4 Hypotheses evaluation

In the crucial step of evaluating the likelihood of Layout Hypothesis,

each layout component contributes its own scoring term. The scoring

terms of all the layout components within a layout hypothesis contribute

to the final score of the hypothesis both individually and as part of an

inter-component interaction scheme. This design choice enables the im-

plementation of complex interaction schemes to cope with more compli-

cated scenarios, allowing to exploit geometrical, physical and semantic

constraints. As an example, the matching of the estimate of the road

width with the size and position of a building façade against a topometric

map, may considerably refine the quality of the scene layout. Further-

more, a Layout Hypothesis with a misplaced building Layout Compo-

nent, e.g., in the middle of a crossing area, will naturally turn extremely

unlikely. After all hypotheses have been evaluated, the resampling step

takes place. Here, a new set of hypotheses is drawn from the previously
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evaluated Layout Hypothesis, taking in consideration their importance

factor, i.e., the score of the Layout Hypothesis.

The global scheme of the proposed framework is formalized in Algo-

rithm 1.

Algorithm 1 Filter Layout Estimation

Require: M ← surrounding map from OSM

1: ∀ l ∈ LayoutHypothesis⇒ lpose ← initialize with GPS

2: ∀ l ∈ LayoutHypothesis⇒ lspeed = 0

3: procedure FILTER(LayoutHypothesist−1)

4: if new detection flag then

5: for all l ∈ LayoutHypothesis do

6: l.add(new detection)

7: end for

8: end if

9: for all l ∈ LayoutHypothesis do

10: propagatePoseEstimation(l)

11: for all c ∈ l do

12: propagateComponent

13: calculateComponentScore

14: end for

15: calculateScore(l)

16: end for

17: if resampling interval reached then

18: resample hypotheses set

19: end if

20: return: LayoutHypothesist
21: end procedure

3.2 Leveraging RLE for Vehicle Localization

In this section, we present an application of the proposed framework to

the vehicle localization problem within urban driving scenarios, demon-

strating the effectiveness by reaching state-of-the-art localization perfor-

mances. For this purpose, we exploit the information provided by two

physical sensors (a GPS receiver and a stereo camera) and one virtual

sensor (a software module capable to retrieve information from a topo-

metric map service). In this work, we use the road network obtained

from the OpenStreetMap service, which provides open access to under

the ODbL license [178], in contrast to the more restrictive Google Maps
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Figure 3.3: The OpenStreetMap Layout Component contributes to its Layout Hypoth-

esis evaluation considering the distance (here represented with a red line) between the

Layout Hypothesis position coordinates with respect to the nearest road segment (here

represented with a green line) and the angular misalignment (here represented with a

blue arc), which includes also the road driving direction.

terms of service [179]. The first step is a rough initialization of the sys-

tem, in which the localization within a bounded area is assumed for all

the Layout Hypotheses. For instance, we can use a circle of suitable ra-

dius, centered on the last known vehicle position or, if a GPS module

is available, we can exploit the GPS fix to provide an initial, yet noisy,

global latitude-longitude localization. Following the intuition provided

in Section 3.1.2, this information will be used to generate a normally dis-

tributed set of layout hypotheses (in this case they are just localization

hypotheses), in the area of uncertainty of the GPS estimate. The evo-

lution of the Layout Hypotheses depends on the sensor readings and on

the software components that process them. In this work, we propose to

process the stereo camera stream using a state-of-the-art Visual Odome-

try approach, namely the LIBViso2 [177] library, to provide an estimate

of the observer’s motion. Our OpenStreetMap (OSM) software module

(based on the Osmium Library [180]) automatically retrieves from the

Internet the portion of map the observer is moving within and, by means

of a map-matching technique, evaluates the error of each localization

hypothesis with respect to the nearest road segment. As depicted Fig-

ure 3.3, this evaluation takes into account both the euclidean distance

and the alignment error of the Layout Hypothesis pose with respect to

the nearest OSM road segment, as well as the road driving direction.

Two out of three sensors will then behave as producers of very simple

Layout Components, implementing the two required routines described

in Section 3.1.3. In particular, the stereo camera component will propa-
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gate according to the LIBViso2 [177] motion estimate and will provide a

score reflecting the quality of its estimate, while the virtual sensor com-

ponent (OpenStreetMap module) will propagate along the nearest map

road segment. If a component does not have a proper motion model,

like in the case of a GPS sensor component, it will simply integrate the

information gathered by the sensor into its component state, allowing

the framework to use the measurement during the Layout Component

scoring step.

3.2.1 OpenStreetMap features

In the OpenStreetMap service1, the map features are mainly composed

of three elements, i.e., nodes, ways and relations, to which several tags

can be associated. The nodes, stored in WGS84 latitude/longitude coor-

dinate system, represent the fundamental element for every other com-

plex feature and therefore can be used to mark signs or, combining sev-

eral points, to create the shape of a road. The ways are used to de-

scribe linear features such as road, roundabouts, building façades and

other polylines, and usually are combined with tags, e.g., street direc-

tions, number of lanes or road width. Finally, relations models logical

and geographical relationships between objects, such as administrative

boundaries.

3.2.2 OpenStreetMap module: Hypotheses initialization and Scor-

ing Function

The OpenStreetMap module allows us to contribute to the estimate of a

layout hypothesis, i.e., its 6DoF pose, by means of the technique known

in literature as map-matching, allowing the system to perform a lock on

road [107] procedure. During the initialization step, initial poses of hy-

potheses are drawn from a normal distribution centered in the first avail-

able GPS information, with a standard deviation proportional to the GPS

uncertainty. According to the constraint that cars are supposed to drive

on roads, each hypothesis is roto-translated to the OSM module pose,

which is guaranteed to lay on a road. Figure 3.4 depicts the initialization

for the set of localization hypotheses.

During the hypotheses evaluation step, the scores are calculated ac-

cording to the differences between the 6DoF poses and their projection,

1https://wiki.openstreetmap.org/wiki/Elements

https://wiki.openstreetmap.org/wiki/Elements
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(a) (b)

Figure 3.4: The figure depicts the initialization phase. The hypotheses, shown as green

arrows, are drawn from a normal distribution, centered in the first available GPS posi-

tion estimate, proportional to its uncertainty and snapped to the nearest road segment.

In Figure 3.4a, the yellow arrows depict the LIBViso2 [177] odometry information (the

vehicle axis orthogonal to the forward motion), and the road network is shown using

red segments between OSM waypoints. We also plot the road driving directions using

light blue arrows (close to the road segments).

snapped on the nearest OSM road segment (Figure 3.3), in terms of eu-

clidean (Equation 3.1) and orientation (Equation 3.2) distances, consid-

ering also the road driving direction gathered from the OpenStreetMap

module. The final score of the hypotheses is computed as in Equa-

tion 3.3, in which we also introduced two α-values which allows us to

weight differently each contribution.

OSM⇌ =
1

σ⇌

√
2π

e

−(lposition−snapp)
2

2σ2
⇌ (3.1)

OSM∡ =
1

σ∡

√
2π

e

−(lrotation−snapR)2

2σ2

∡ (3.2)

LayoutHypothesisi = α1 ·OSM⇌ · α2 ·OSM∡ (3.3)

3.3 The Building Model

In this section, we present a technique to detect and exploit building

façades and the correponding OpenStreetMaps building outlines to im-

prove the localization of a vehicle driving in an urban scenario. The

proposed approach leverages images from a stereo rig mounted on the

vehicle to produce a representation of the buildings’ façades within the
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Figure 3.5: Example results from the proposed buildings approach on one sequence of

the KITTI dataset, and the corresponding OpenStreetMap road network along with the

building outlines. The green and red lines represent respectively the one-way and two-

way traffic roads, while the buildings outlines are shown in pale green. The satellite

image was also overlayed.

field of view. This representation is matched against the outlines of the

surrounding buildings as they are available from the OpenStreetMap ser-

vice. The information is then fed into our probabilistic framework as a

new Layout Component, in order to produce an accurate lane-level lo-

calization of the vehicle. The experiments conducted on the well-known

KITTI datasets prove the effectiveness of our approach.

3.3.1 Façades Detection Pipeline

In the context of urban areas navigation systems cannot rely on the

GNSS signals (e.g., GPS, GLONASS, Galileo) since it undergoes multi-

paths and physical barriers, leading sporadically to very poor GNSS ac-

curacy or even to no estimate at all. In order to overcome this issue, navi-

gation modules usually couple the GNSS system with cartographic maps

and methods that leverage the road graphs. These techniques are usually

known as lock-on-road algorithms, see, e.g., [9]. While these approaches

led to remarkable increases in the localization accuracy, they yet do not

allow us to achieve the necessary precision for a lane level localization,

i.e., accuracies in the order of 10cm [2]. However, we can extend the

aforementioned approach by exploiting the buildings themselves, and
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(a) (b)

(c) (d)

Figure 3.6: The figure depicts the localization accuracy in both the lateral and longitu-

dinal directions. We aim to increase it by exploiting the building outline information

from the OpenStreetMap service. Figures 3.6a and 3.6b refer/show a typical so-called

“urban canyon situation”, where the GPS signal may be degraded due to signal block-

age and severe multipath. Figures 3.6c and 3.6c refer/show a residential area: in this

case the buildings façades in the opposite side of the intersection may be employed to

reduce the longitudinal localization uncertainty.

Figure 3.7: To generate a 3D model of the building façades within the scene, we devel-

oped the depicted detection pipeline, which bases on the images from a stereo rig.
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integrate this new feature as a new Layout Component within the Road

Layout Estimation framework. We model the building façades using the

geometric pipeline depicted in Figure 3.7. In contrast to the complex yet

time consuming techniques described in Chapter 2, our approach allow

us to achieve a satisfactory, although not real-time, performance without

having performed any specific code optimization. With respect to the lo-

calization setup proposed in Section 5.1.2, here the framework shows its

effectiveness by means of the seamless integration of new components

into the scene layout evaluation process.

3.3.2 The Buildings Database

We propose to leverage the well-known OpenStreetMap service as infor-

mation source for the building database. According to the OpenStreet-

Map data model, buildings’ outlines can be retrieved selecting the build-

ing key from the list of ways. While the OpenStreetMap documentation

refers to interesting additional tags, like the height of the building, we

believe that, besides the building key, these tags are still not ready to

be exploited, mainly because they are too rarely used, as shown in Fig-

ure 3.8b. After a rough preliminary analysis of the height of the build-

ings in our testbed dataset, we choose to set the building height to a fixed

value, but, thanks to the nature of the proposed approach, this coarse ap-

proximation does not introduce any bias into the localization algorithm.

While the OpenStreetMap service does not guarantee any accuracy about

the outlines of the buildings, the accuracy of their position, at least in the

KITTI datasets that we could inspect, is usually higher than one meter.

In other words, their positioning is accurate enough to potentially allow

us to gain a lane-level lateral localization accuracy as depicted in Fig-

ure 3.6a. As it is shown in Figure 3.8a, the outlines are almost always in

overlap with the real shape of buildings.

3.3.3 Detecting the Building Geometry from image data

To extract a geometric model of the surrounding buildings, the first step

of our pipeline consists in extracting the related façades from the sensor

images. We leverage the Semi-Global Block Matching algorithm [181]

(SGBM), available in the OpenCV library2, a well-known 3D stereo

reconstruction pipeline. This allows us to retrieve a 3D point cloud

2http://opencv.org/

http://opencv.org/
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(a) (b)

Figure 3.8: An example of cartographic map gathered from the OpenStreetmaps ser-

vice. In Figure 3.8a the red boxes around the buildings represent the outlines pro-

vided by the service. In Figure 3.8b a 3D view of the buildings data from the osm-

buildings.org website clearly shows the great number of buildings without a populated

height tag (middle 2016).

from the stereo camera stream, as shown in Figure 3.13a. An ad-hoc

parametrization of the SGBM algorithm was required to obtain useful

results; it mainly differs from the original parametrization in the Corre-

lation Window Size and P1/P2 parameters, which were adapted so as to

better perform with the façade detection. An example of the achievable

results are shown in Figure 3.9 and Figure 3.10.

Furthermore, a refining phase is performed as follows. We first re-

move every 3D point that does not lie inside a 3D bounding box repre-

senting the visible surroundings with acceptable tolerance. We set the

limits according to the field of view of the camera, resulting in 50m

with respect to the longitudinal axis, ±50m on the lateral axis and a

[−0.4, 16]m threshold with respect to the vertical axis. Given the KITTI

stereo camera configuration, the resulting bounding box cuts objects un-

der 1.25m with respect to the flat road plane. Conceptually, this expe-

dient allows us to filter the most cluttered area in the field of view, yet

keeping the main structure of the façades untouched, as depicted in Fig-

ure 3.13b.

After this preliminary stage, we calculate the surface normals of the

resulting point cloud. The insight here is to keep only the points ly-

ing on similar planes, i.e., removing the outliers not staying on same

plane before the following filtering step. In order to calculate the nor-

mals vectors, we used the Integral Images method proposed by [182] and

implemented in the PCL Library, achieving very good results and per-

formance speeds comparable with the KITTI dataset frame rates, e.g.,
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(a)

(b)

(c)

Figure 3.9: In Figure 3.9a, a frame from the KITTI dataset, sequence

2011 09 26 drive 0005, and the corresponding depth map as obtained with the stan-

dard parametrization of the SGBM algorithm in Figure 3.9b. Our custom parametriza-

tion, depicted in Figure 3.9c aims to maximize the façade detection.
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(a)

(b)

Figure 3.10: Resulting 3D point clouds obtained using the standard SGBM

parametrization (Figure 3.10a) and our parametrization (Figure 3.10b).
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(a) Output of the Region Growing Segmentation al-

gorithm. The area on the middle contains 3 hidden

façades

(b) In the picture, the desired segmentation is

shown.

Figure 3.11: The figure depicts a typical segmentation error. Using only the angle

between normals and the surface curvature obtained from the 3D point cloud only,

the Region Growing Segmentation algorithm detected only 3 (Figure 3.11a) out of 5

façades (Figure 3.11b) present in the segmented areas.

10Hz. To further refine the results, we use a conditional filter over the

normal vector associated with candidate point. The assumption is that

building façades are almost orthogonal to the driving plane, and, to bet-

ter cope with the reconstruction noise, a threshold is applied according

to Equation (3.4), where n = [nx, ny, nz]
T is the normal vector associ-

ated with point p and th represents the desired threshold. In this work,

we chose to keep the points under a threshold value of 20◦deg.

|cos(α)| = |nz|
√

n2
x + n2

y + n2
z

< cos(
π

2
− th) (3.4)

3.3.4 Semantic Segmentation

After the first filtering step, during which the resulting point cloud is

processed to reduce the amount of clutter, a two-phase façades recogni-

tion takes place. The first step involves a clustering procedure by means

of the Region Growing Segmentation algorithm implemented within the

PCL library. This algorithm aims at merging points that are considered

to lie on the same plane when the angle between their normals is be-

low a given threshold. In this way we create a cluster of points lying

on the same smooth surface. The main insight from this procedure is to

further improve the façade detection, leveraging the smoothness of the

surfaces. The parameters θth and cth of the Region Growing algorithm,

representing the angle between normals and the curvature threshold for

the surface analysis, are respectively set to 10◦ and 0.1. The results of

this first steps are depicted in Figure 3.13c.

Although this procedure is usually able to identify the façades reject-

ing the most common sources of noise, it is not the only procedure used

during the segmentation phase. Multiple consecutive planes yet not be-
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longing to the same building might be detected inside a single cluster, as

depicted in Figure 3.11. Recalling that the previous phase is dedicated

to enhancing the point-to-façade affinity rather than associating points to

a specific façade, the following step aims at extracting the planar region

patches association for each point inside each cluster. As we cannot eas-

ily know how many planes are available inside each cluster, we used the

iterative Plane Model Segmentation algorithm of the PCL libraries in or-

der to cope with an arbitrary number of planes. The method consists in

evaluating the points inside each cluster, using a distance threshold that

refers to the standard plane equation. As the number of points belonging

to each plane cannot be specified a priori, the procedure consecutively

performs a search phase in order to detect planes orthogonal to the road

surface. The procedure grounds on the RANSAC approach and exits

when the number of points, i.e., the outliers, fall below a 10% threshold

over the initial number of points. The number of RANSAC iterations

was evaluated using Equation (3.5) [183], where p value was set to 0.99

and m value equals to 3 since three non-collinear points are needed to

estimate a plane equation. According to our experimental activities, we

achieved a good plane detection using v =
3

5
and thus an average of 70

RANSAC minimum iterations.

N =
log(1− p)

log(1− (1− v)m)
=

log(1− 0.99)

log(1− (1− 0.6)3)
= 69.63 ≈ 70 (3.5)

3.3.5 Post Processing

The results after the aforementioned steps consists of a set of candi-

date façades, represented by plane equations. Since we gathered the 3D

façades from the building database using a simple extrusion, i.e., intro-

ducing an orthogonality constraint with respect to the road surface, we

need a perpendicularity correction of candidate plane equations before

performing the evaluation step. On the one hand, the thresholds applied

to the RANSAC procedure clearly lead to an approximation. On the

other hand, the presence of architectural structures, like windows or bal-

conies, limit the accuracy of the proposed pipeline as a whole façade is

always approximated by a single 3D plane or patch. However, despite

this apparently rough estimate, we verified that these detected façades

are extremely useful to achieve a good enhancement in terms of lane-

level localization. We apply the perpendicularity correction by simply
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(a) (b) (c)

Figure 3.12: Perpendicularity correction. In Figure 3.12a blue color represents the

original plane and red the plane made orthogonal to the ground plane. Figures 3.12b

and 3.12c depict a typical façade with a balcony, which introduces a bias in the plane

estimation using our pure geometric approach.

replacing the candidate façades with new planes oriented as the original

ones, but orthogonal to the ground plane, as depicted in Figure 3.12a.

The results up to this phase are then a set of plane equations, repre-

senting the candidate façades detected from the stereo image pair.

After a new pair of images is received and processed, the next step of

our pipeline is to query all buildings outlines within an area of a given

threshold (st to 30m) centered on the vehicle position stored within the

Layout Hypotheses. We then build the 3D model of the surrounding

buildings, i.e., an approximation of the building façades by means of

plane equations extruded orthogonally to the road surface. Figure 3.5

depicts the resulting output of this step.

3.3.6 Layout Component Scoring function

The previous sections proposed a façade detection pipeline. To exploit

the results within the Road Layout Estimation framework we need to in-

troduce a new Layout Component, i.e., the Building Component, which

contains instances of the scene elements hypothesized by the aforemen-

tioned detection scheme. To allow the framework to enhance the local-

ization accuracy using this information, the Layout Component needs

to implement the calculateComponentScore routine described in Sec-

tion 3.1.3 (since the buildings are not supposed to move, the propagate-

Component routine is absent). Although all planes from both the detec-

tion pipeline and the OSM service are described as full 3D planes, we

exploited the orthogonality to the road constraint in order to base on a

simpler 2D scoring function. Recalling that this module aims at enhanc-

ing a localization estimate, we evaluate the detections as follows. First

of all, the points representing a building façade are transformed with re-
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(a)

(b)

(c)

(d)

Figure 3.13: The figure depicts the steps of the pipeline. The yellow color represents

the unreconstructed areas, i.e., the parts that will not be used in the reconstruction.

In Figure 3.13a, the point cloud from the SGMB phase, in Figure 3.13b, the same

image after the bounding box application. Please note that the façade structures are

almost preserved. Figure 3.13c depicts the results of the Region Growing segmentation

algorithm, while in Figure 3.13d the results after the final RANSAC iteration.
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spect to the vehicle position, i.e., the hypothesized position we might

have to enhance. From the OpenStreetMap endpoints of the segments

describing the building outlines, we define an edge e as follows:

e =< A,B,M, ǫ > (3.6)

where:

• A = [xA, yA, zA]
⊺ and B = [xB, yB, zB]

⊺ are the endpoints of each

segment of the building outline list from OpenStreetMap.

• M = [xM , yM , zM ]⊺ is the average point of the segment of building

outline.

• Let ǫ = [aǫ, bǫ, cǫ, dǫ]
⊺ be the plane perpendicular to the road

ground plane and passing through A and B. Then let u = B−A.

Then define:

– [aǫ, bǫ, cǫ]
⊺ = u× z.

– dǫ = −(aǫxA + bǫyA + cǫzA).

We further define a façade as:

f =< P, π, C, score : (F × E)→ [0; 1] > (3.7)

where:

• P is the set of points that belong to a plane

• π = [aπ, bπ, cπ, dπ]
⊺ is the façade plane model

• C is a subset of edges of the OpenStreetMap map E. The items

in C are those candidates that match the bounding box defined in

Section 3.3.3.

• score is the mapping function between edges and façades

Thus, for each detected façade we consider all of its close candidate

edges in the OpenStreetMap map. The score is calculated by evaluating

the following geometric relationships:

• A Cartesian distance between the points belonging to the façade,

i.e., the remaining points after the detection pipeline, with respect

to the candidate edges as in Equation (3.13)
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• A measure regarding the edge-to-façade misalignment, as in Equa-

tion (3.14).

From a technical perspective, the better the alignment between the

detected façade and the edge calculated using the OpenStreetMap data,

the higher the score relative to the vehicle position is. We hypothesized

a normal distribution for each of the previous distances, to individually

evaluate each score, using Equations (3.8) to (3.11).

f(d̄ | µd, σd) =
1

σd

√
2π
· e
−(d̄− µd)

2

2σ2
d (3.8)

f(α | µα, σα) =
1

σα

√
2π
· e
−(α− µα)

2

2σ2
α (3.9)

score(d̄) =
f(d̄ | 0, σd)

f(0 | 0, σd)
(3.10)

score(α) =
f(α | 0, σα)

f(0 | 0, σα)
(3.11)

score(fi, ej) = c1 ∗ score(d̄) + c2 ∗ score(α) (3.12)

Given these two scores, which are combined as in Equation (3.12), the

overall façade-to-OpenStreetMap plane association is then performed

employing a winner-takes-all strategy as described in Algorithm 2. Con-

ceptually, we calculate the score with respect to all the candidate edges,

then returning the highest achieved score.

Finally, the overall scene score is evaluated considering the average

score of all the façades as in Algorithm 3, weighted using the number

of points associated with each façade as show in Equation (3.15). This

expedient allows to tailor the weighting scheme of the façades using the

most likely ones, as depicted in Figure 3.14.

d̄ =
1

|P |

|P |
∑

i=1

|aǫxi + bǫyi + cǫzi + dǫ|
√

a2ǫ + b2ǫ + c2ǫ
(3.13)
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Figure 3.14: The picture shows how the façade are differently weighted with respect

to the numer of associated points. The idea here is to give higher scores to the façades

better detected.

α = arccos

(

aπaǫ + bπbǫ + cπcǫ
√

a2π + b2π + c2π
√

a2ǫ + b2ǫ + c2ǫ

)

(3.14)

scene score =

F
∑

i=1

|Pi| · score(fi)

F
∑

i=1

|Pi|
(3.15)

An overview of the pipeline steps is shown in Figure 3.7.
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Algorithm 2 scoreCandidates

Require:

f = the façade to score

E = OpenStreetMap edge set

thresh = proximity threshold

1: C ← ∅
2: for e in E do

3: midpoint← e.M

4: for p in f.P do

5: dist← dist(p,midpoint)

6: if dist < thresh then

7: C ← C ∪ e

8: break

9: end if

10: end for

11: end for

12: return C

Algorithm 3 Overall Scene Score

Require:

F = segmented façade set

E = OpenStreetMap edge set

1: scene score← 0.0

2: norm term← 0

3: for f in F do

4: scores← ∅
5: f.C ← findCandidates

6: for c in f.C do

7: scores← scores ∪ score(f, c) //Equation (3.12)

8: end for

9: scene score← scene score+ f.|P | ×max scores

10: norm term← norm term+ f.|P |
11: end for

12: scene score← scene score/norm term

13: return scene score
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3.4 Road markings: Width and Lanes

The aforementioned building component brings major benefits in urban

or residential areas, where the building façades are usually clearly visible

in the image. A completely different driving scenario is represented by

the highway environments. As opposed to the previous environmental

conditions, here the framework configuration cannot rely on architec-

ture elements, thus returning to the cartographic only situation described

in Section 3.2. It is worth mentioning that, despite the absence of huge

obstacles and even in open-space areas, the GNSS signals alone cannot

provide the adequate accuracy for an in-lane localization. In this section,

we provide two methods designed to enhance the localization in typical

highway environments, by leveraging the road width and the road num-

ber of lanes retrieved from the OpenStreetMap module. Both systems

rely on a very simple road line tracker that was kindly provided by the

INVETT Research Group (previously ISIS Research Group) of the Uni-

versidad de Alcalá, Alcalá de Henares - Madrid, lead by the Professor

Miguel Ángel Sotelo Vázquez. The problem of line and lane detector

has been tackled since the first approaches of the Professor Ernst Dick-

manns in the mid of the 80’s. Since then, a considerable amount of sci-

entific work led to great advantages in [3, 4, 5, 6] and we refer the reader

to the work in [8] for a comprehensive survey of the state-of-the-art ap-

proaches.

Instead of developing a new line detector, the idea behind the next

two Layout Components is to exploit the available road properties and,

leveraging the modularity of the proposed framework, reduce the local-

ization uncertainties.

3.4.1 Line detector

In this section, we shortly describe the line detection and tracking algo-

rithm used in this thesis. The purpose of this presentation is to highlight

the pros and the cons of the approach, which are addressed by the pro-

posed enhancement schemes. From a technical perspective, the pipeline

leverages the image information of an on-board stereo rig, with known

calibration with respect to the vehicle’s reference frame. The algorithm

consists of the following steps, which are also depicted in Figure 3.15:

• A first image processing phase, aimed at extract the contours of the

road markings, is performed in the Bird Eye View (BEV) of the
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right camera. For this reason, an homography matrix is computed,

leveraging the intrinsic values of the camera and the extrinsic val-

ues with respect to the road surface.

• The BEV image is then evaluated leveraging the algorithm pro-

posed in [184].

• From the contours image, the white areas are evaluated considering

their size. All areas below a parametrized threshold are discarded.

• At this time, the stereo image is exploited. Considering one con-

tour at time, the algorithm tries to model the corresponding lines

by fitting a clothoid model, considering the height value associated

to each point of the image. To perform the latter 3D evaluation,

the system leverages the SGBM algorithm in order to estimate the

road plane equation. Differently from the original INVETT algo-

rithm’s, in our implementation we have exploited the more efficient

ELAS [185] algorithm.

• According to the 3D road plane, the clothoids are then evaluated in

order to prune out false detections.

• The retrieved clothoids parameters are then processed by means of

a Kalman Filter that allow the detector to track the lines in time.

A hysteresis counting procedure is also used to track the reliability

with respect to the last 10 frames.

With respect to the performance evaluation of this simply algorithm, it

has to be said that the algorithm achieves good performances only under

optimal illumination conditions. As the reader may notice in Figure 3.16

dashed lines and shadows are not always handled correctly. However,

this simple and, to some extent, naive detector, allows us to efficiently

evaluate our next Layout Components, which are specifically designed

to enhance the vehicle localization estimate by exploiting a noisy sensor,

and the width and lanes values stored in OpenStreetMap road.

3.4.2 Road Width Component

The first and simpler road component we introduce, tackles a common

issue that arises with lock-on-road localization algorithms such as in

Section 3.2. Consider for instance the situation depicted in Figure 3.17,

where a vehicle that has been traveling in the rightmost lane for a while
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(a) A frame from the KITTI dataset

(a) Bird Eye View

(BEV)

(b) Contours in

BEV

(c) Tracking Exam-

ple 1

(d) Tracking Ex-

ample 2

(e) Dashed line is-

sue

Figure 3.15: INVETT Line Tracker color code: green, clothoids currently tracked;

red, clothoid model without support in the current image; blue, new clothoid, not yet

tracked. Images from the KITTI dataset, sequence 2011 10 03 drive 0042.

turns onto the exit ramp that runs along the main highway. In this case,

relying on a lock-to-road procedure only may easily lead to catastrophic

errors, since the vehicle dynamics and the GNSS insufficient accuracies

may not allow the vehicle to quickly recover from a complete wrong

localization estimate. A comparable situation occurs when two paral-

lel roads are in close proximity. In this section, we propose to tackle

this issue by leveraging the road width information calculated using the

aforementioned line detector, and the width tag provided by OpenStreet-

Map. In particular, the Road Layout Estimation framework will be ex-

ploited by means of a new Layout Component, aimed at improving the

localization estimate in parallel roads contexts.

Width Estimation

To evaluate the road width measure, we modified the original INVETT

line detector algorithm in order to output a new is-continuous flag as-

sociated with each detected line (this was done by trivially counting the

number of white pixels over the whole clothoid area). Let us consider

the example in Figure 3.18a, in which the output of the detector will be

as in Figure 3.18b. From these values we calculate the road width by
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Figure 3.16: In this figure, two out of three lines are correctly tracked. The shadow

created prevents the correct detection of the third line. Comparable issue arises also

with dashed lines, if the space between two consecutive dashes is too large. An example

of this problem is depicted in Figure 3.15e. In the image, the distances with respect to

the lines are overlayed together with the ten-frames counter used to evaluate the line

reliability. In the overlay, the Line 1 is valid (1), it has been correctly tracked in the last

(10) frames and it is (+1.60m) far from us (on the right).

Figure 3.17: The figure depicts a common highway scenario with two parallel roads.

In these cases, a simple map matching algorithm is not able to discriminate the correct

vehicle position.
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(a) (b)

Figure 3.18: In the figure, the detected lines are re-projected in the 3D image-space.

The corresponding line measurements are depicted on right.

evaluation one of the following two measures.

• If at least one continuous line is detected, we calculate the De-

tectedWidth measure considering the farthest continuous lines from

each side (if only one is available, then we consider this measure as

the full road width). Please notice that we consider the continuous

lines as the road boundaries.

• Otherwise we calculate the DetectedNaiveWidth measure, consid-

ering the closest detected lines from each side, even if not valid,

multiplied by lane number of the current road.

Following the same pattern as described in the previous sections, we in-

troduce a new Layout Component, which is composed of a one single

value, that is, the road width. During the initialization phase of the com-

ponent, we exploit our the OpenStreetMap module to retrieve the nearest

road segment and its associated width attribute. If the width value is not

available, then we evaluate the width leveraging the more common lanes

number tag, multiplied by the standard width value of 3.75 m (or accord-

ing to the national traffic code). We model the two fundamental Layout

Component routines as follows. With regards to the first propagateCom-

ponent routine, here we introduce a small perturbation term that allow

us to handle the OpenStreetMap approximations. The predicted width

value is sampled from a mixture distribution that is composed of two

normals, respectively:

• N1(µ = LayoutComponentStatet−1, σ
2 = σ1)

• N2(µ = {DetectedNaiveWidth or DetectedWidth}, σ2 = σ2)
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Table 3.1: Mixture Weighing Scheme

Widtht-1 CurrentWidth

DetectedWidth 0.1 0.9

DetectedNaiveWidth 0.3 0.7

No Lines Detected 0.9 0.1

Please notice that the µ value of theN2 distribution is evaluated using the

appropriate width, e.g., one of the two aforementioned widths (depend-

ing on the detector’s output). Finally, if no line is found, accordingly to

the national traffic code, the mixture varies as follows:

• N1(µ = LayoutComponentStatet−1, σ
2 = σ1)

• N3(µ = 3.75m · Lanes Number, σ2 = σ3)

In both cases, the mixture components are weighted using the scheme

given in Table 3.1. Please note that the Widtht-1 and the CurrentWidth

represents respectively the previous Layout Component state and the

sensor reading. An ideal line detector would always measure the cor-

rect road with. Unfortunately, our detector is far from the perfection.

Following the probabilistic approach of our framework, we explicitly

model the sensor noise by means of a simple measurement model. We

incorporate the “missing line” error by introducing a further mixture of

two new densities, which represent our estimation error, i.e., a wrong

width estimate due to a line missing. The mixture is composed as follows

and the weighted average is computed using the parameters in Table 3.2.

• N4(Expected OSM width + 1 · Standard Lane Width, σ2 = σ4)

• N5(Expected OSM width , σ2 = σ5)

• N6(Expected OSM width - 1 · Standard Lane Width, σ2 = σ6)

At this point, the framework executes the second calculateComponent-

Score routine of the Layout Component. This second step is designed to

incorporate the sensor measure into the previously evaluated prediction.

From a theoretical point of view it represents the measurement update

step of a generic Bayes Filter [39].

3.4.3 Lane Component

The second component we introduce consists in a lane detection mod-

ule. This component is designed to increase the in-road localization ac-
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Table 3.2: Sensor model Mixture Weighing Scheme

Weighing Parameter

Weight for OSM width + 1 0.2

Weight for OSM width 0.6

Weight for OSM width - 1 0.2

Figure 3.19: An example of overexposed frame from the KITTI dataset, sequence

2011 10 03 drive 0042.

curacy of the OpenStreetMap scheme proposed in Section 3.2, allowing

the framework to achieve in-lane localization in highway scenarios. On

the one hand, the understanding of the vehicle’s ego-lane can be consid-

ered as a by-product of the line detection procedure. In fact, having the

relative positions of all the road lines within the road may allow us to

simple evaluate the current lane using some trivial geometric consider-

ations, in a per-frame basis. Unfortunately, a reliable full-line detection

is usually hampered by vanished lines, cluttering elements or weather

conditions as in Figure 3.19 and Section 2.8.3. On the other hand, let us

consider the situation depicted in Figure 3.20a, which is surely a critical

situation concerning the ego-lane identification problem. Even though

no exact positioning can be estimated from the single detection shown in

the image, a distance measure from the lane would enable us to limit the

uncertainties to the compatible lanes only, as depicted in Figure 3.20b.

Our proposal is then to tackle the ego-lane estimation by exploiting a

probabilistic approach, in order to allow the system to infer the ego-lane

estimation by leveraging consecutive, yet incomplete observations over

the time. From a technical perspective, we opt for a Hidden Markov

Model approach [186] with n-lane states, corresponding to the number

of traffic lanes as stored within the OpenStreetMap service.
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Figure 3.20: In this situation, only one out of four lines are detected. In Figure 3.20b the

highlighted lanes correspond to the higher probability of the vehicle ego-lane, evaluated

by leveraging the relative distance with respect to the only detected line.

3.4.4 Final considerations

In this last section we proposed two algorithms aimed at enhance the

initial vehicle position provided by the lock-on-road procedure shown

in Section 3.2. We took into account two specific features of typical

highway scenarios, i.e., the width and the number of lanes, together with

a basic line detector that allowed us to verify our intuitions. Despite

the quite simple considerations introduced, the experimental results in

highway environments demonstrate the effectiveness of this approach.

3.5 Conclusions

In this chapter we have presented the Road Layout Estimation frame-

work, together with three Layout Components and the associated sensing

pipelines that allowed us to tackle the main challenges in the context of

vehicle localization. The proposed framework has proved to be effective,

allowing a seamless integration of new components into the localization

process.
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Chapter 4

Intersection Detector

In this chapter, we present an Intersection Detector module that aims to

recognize the geometric configuration of road crossings. The discussion

of this new Layout Component is separated from the previous compo-

nents because of two reasons. First, while retaining an on-line approach

as the previously mentioned Layout Components, this module has not

been engineered up to attain real-time performances. However, to the

best of our knowledge, our proposed system has achieved state-of-the-

art performances with respect to similar on-line approaches.

Secondly, the idea on which this module is based is to introduce a first

higher level semantic representation of the vehicle surroundings, allow-

ing the Road Layout Estimation framework to gain situational aware-

ness, one of the most crucial circumstances in urban scenarios [187].

The algorithm hinges on a stereo image stream, and it is our first step

towards a complex outdoor urban scene understanding system by means

of higher semantic level detectors. This work has been accepted to

the IEEE International Conference on Robotics and Automation (ICRA)

2017.

4.1 The Intersection Model

As opposed to other state-of-the-art off-line methods, which usually re-

quire a batch processing of a short video sequence, our approach inte-

grates the image data by means of an on-line procedure.

For the purpose of classification of the intersections, we consider the

7 common intersection configurations shown in Figure 4.2b as in the
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Figure 4.1: Example results from the proposed framework on one run of the KITTI

dataset, and the corresponding road classification association. The image on the top

represents the pixel-based classification. The two small boxes in the upper right corner

respectively represent the true intersection topology and the one detected by our work.

The bottom images represent the projection of the 3D geometric reconstruction (left)

along with its 3D classification (right). Note that the intersection topology is correctly

recognized even in presence of a few classification errors.
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(a) (b)

Figure 4.2: In Figure 4.2a the geometry model used to generate the intersections and,

in Figure 4.2b, the 7 common intersection patterns recognized by the proposed method

(b).

state-of-the-art . In our proposed method a mixture of geometric and

pixel-wise classification schemes has been employed to generate the in-

tersection detection.

The results are used to score a hypothesized localization within the

Road Layout Estimation framework, thus allowing to tackle the local-

ization problem also by means of an analysis based on road intersection

detection.

4.2 Geometric Segmentation of the Road

To achieve a good classification of the intersection topology, our method

first need to identify the road surface. The pipeline starts computing

the disparity map and the associated 3D point cloud by means of the

ELAS [185] and the PCL [188] libraries. Differently from what pro-

posed in Section 3.3, here the ELAS algorithm was preferred over the

SGBM [181] algorithm since this method considerably reduces the noise

amount with respect to the road surface as shown in Figure 4.3. The first

step after the 3D point cloud reconstruction consists in the evaluation of

the equation of the local road plane. For this purpose the resulting point

cloud is filtered as follows:

• Crop to a bounding box, in order to keep only a small area in front

of the vehicle. With respect to a x-axis forward, y-axis port and
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z-axis up reference system, the bounding box limits were set us-

ing 5m as y lateral offset, 2.5m in z height coordinate, and x

longitudinal range 0− 20m.

• Estimate the surface normal vectors for all the points within the

bounding box area.

• Remove the points whose normal is not compatible with being a

road. We consider suitable a normal vector if it is orthogonal with

respect to the x−y plane of the camera reference frame (in the used

datasets the optical axis of the cameras are approximately parallel

to the road plane). We accommodate reconstruction errors and in-

clined vehicle (with respect to the road and the suspension system)

by including a tolerance threshold.

• Fit a 3D plane using the remaining points by means of a RANSAC

approach and delete every point not close enough to the fitted plane

equation.

4.2.1 Point Cloud Occupancy Grid: PCLOG

The whole point cloud is then exploited to generate the first component

used for intersection detection: a discrete 2D bird-eye-view grid where

each grid cell holds a probability value representing how likely is that

the cell belongs to the road surface. We refer to this Occupancy Grid

as PCLOG; an overview of the scheme is shown in Figure 4.4. The

probability values of the cells are calculated by considering the average

distance of the estimated 3D plane to the points falling inside each cell.

The average is then weighed by considering a Probability Density Func-

tion of a standard Gaussian distribution with zero-mean and a variable

standard deviation increasing within the range 0− 50m (from σ = 0.15

at 0m, i.e., the position of the cameras, to σ = 1 at 50m). Lastly, we

normalize the values of all cells using Equation (4.1).

PCLOG[i, j] =
PDFd(x[i, j])

PDFd(0)
(4.1)

The output of this procedure does not allow us to reliably infer a sta-

ble intersection configuration, in spite of the fact that we did not observe

critical errors from the fitting phase. The main reason can be traced to

the slight height difference between the road surface and the sidewalks,
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(a)

(b) (c)

(d) (e)

Figure 4.3: In this picture, a frame from the KITTI dataset and its PCL maps, obtained

using the SGBM (4.3b) and the ELAS (4.3c) algorithms, respectively. The second ap-

proach yields significantly richer and denser road surface reconstructions even using

the enhanced parametrization proposed in Section 3.3.3, allowing to achieve the best

results from our geometric segmentation pipeline. In Figures 4.3d and 4.3e respec-

tively, two classification results with the geometric reconstruction, using 0.15m and

0.05cm threshold distance from the 3D road plane equation.
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(a) Original Left Camera Image

(b) Point Cloud from the ELAS algorithm (c) The PCLOG

Figure 4.4
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especially in the KITTI urban scenarios, this height is almost always

very very small. A similar problem applies also to all the other objects

laying on the same plane yet not belonging to the road or intersection

area, e.g., private roads, lawns, bicycle paths, etc. These situations, con-

currently with the uneven pavement surfaces, leads to the treacherous

situations presented in Figures 4.3d and 4.3e, due to choice of the thresh-

old. Although this approach, based on the identification of a geometric

road plane model, has shown interesting results in specific contexts, e.g.,

roads with a low degree of clutter and well-defined curbs, an extended

experimental activity clearly demonstrates that a reliable detector needs

other information source. It has not come as a surprise, since state-of-

the-art algorithms as [189] for road detection usually involves a mixture

of 2D and 3D features, coupled with high level segmentation and classi-

fication techniques including Random Fields, Decision Trees or Neural

Networks. However, as it makes no sense to renounce to benefit from

this classification, we introduced a complementary image processing

pipeline. In the following section we describe how image segmentation

algorithms can aid the pure-geometric PCLOG approach.

4.3 Semantic Segmentation

To semantically segment the image we combine the per-pixel classifier

proposed in TextonBoost [190] and the CRF based approach proposed in

[69]. This combination involves a first per-pixel classification using the

texton [191] strategy, followed by a second refinement stage by means

of the CRF model. The aim of the second refining step is to introduce

a spatial dependency between the pre-classified pixels, also known as

pairwise potentials, and thus to better deal with scattered classifications,

i.e., a more precise boundary detections. This scheme was successfully

used in other recent works [68,192,193,194] and a comparison between

the two classification steps is shown in Figure 4.5.

Following the approach introduced in [195], we applied a superpixel

strategy for the CRF classifier rather than a per-pixel approach. The su-

perpixel areas were evaluated using state-of-the-art algorithms including

Quick-shift [196], SLIC [197] and the SLIC-zero variant, and the results

are depicted in Figure 4.6.

Regarding the pairwise potentials interaction scheme, we leveraged

the k-Extended Pairwise method using k = {2, 3, 5, 10}, weighing the
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superpixels dependencies using contrast, center distance, disparity dif-

ference, and centroid misalignment. The results are discussed in Sec-

tion 5.3. The training algorithm pseudo-code for the CRF is shown in

Algorithm 4.

Algorithm 4 CRF Training

Require: Training-set images D
Ensure: Trained CRF model

unary on sp(unary[i], super pixel[i]) evaluates the average of the unary poten-

tials of each pixel, within the same super pixel[i]

GT on sp(GT [i], super pixel[i]) evaluates the unary class of the super pixel[i]

using the higher score

1: function LEARNCRF(D)

2: N ← SIZE OF(D)

3: image[N ]← LOAD IMAGE(D)

4: GT [N ]← LOAD GT(D)

5: super pixel[N ]← ∅
6: data train.X[N ]← ∅
7: data train.Y [N ]← ∅
8: superpixel type← SLIC” //or “quickshift” or “slic-zero”

9: for i← 1 to N do

10: super pixel[i]← COMPUTE SUPERPIXEL(image[i], superpixel type)

11: unary[i]← LOAD UNARY(image[i])

12: data train.X[i]← UNARY ON SP(unary[i], super pixel[i])

13: data train.Y [i]← GT ON SP(GT [i], super pixel[i])

14: end for

15: edge type← ”pairwise” //or “k-extended” or “fully-connected”

16: ADD EDGES(data train.X, edge type)

17: ADD EDGE FEATURES(data train.X, feature list)

18: model← EdgeFeatureGraphCRF

19: model.fit(data train.X, data train.Y )

20: return model

21: end function

4.3.1 Training Dataset

In order to train the proposed classification scheme, we exploit two pub-

licly annotated dataset based on the KITTI dataset. First we used the

dataset proposed by Sengupta et al. [68], which consists of 323 anno-

tated images including the road, sky and vertical categories. The out-

comes achieved after the training phase, however, were not satisfying

as the road areas were frequently misclassified as sidewalks and vice-

versa. We also exploited the dataset related to the work of Alvarez et
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(a) Original Image

(b) Unary Classification

(c) CRF Classification

Figure 4.5: The figure depicts a semantic segmentation of the scene using the proposed

method. In Figure 4.5a the original image from the KITTI dataset. In Figure 4.5b

the resulting segmentation using the texton-based unary classification method. Finally

Figure 4.5c depicts the integration of the pairwise potentials by mens of the CRF ap-

proach.

(a) SLIC-zero (b) SLIC (c) Quickshift

Figure 4.6: Comparison results using state-of-the-art algorithms for superpixel seg-

mentation using same number of regions, in this example 1500.
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Figure 4.7: To better deal with intersection areas, we added a new set of images to

the training set. The new dataset is available at: http://www.ira.disco.unimib.it/iralab/

intersection-detector.

al. [198], by reducing the class space to include road, sidewalks and

other only. Moreover, to better represent all the possible intersection

types, we added 10 more images of intersection areas to the 70 available

in the Alvarez dataset. An example of the set of images used to train the

intersection detector is shown in Figure 4.7.

4.3.2 CRF Occupancy Grid: CRFOG

After the classification step, the pixels are projected in the 3D space fol-

lowing the same scheme used for the PCLOG. From these projection,

we calculate a new occupancy grid that we call CRFOG. Each cell value

represents the probability of the area to belong to a road and is com-

puted as in Equation (4.2), i.e., considering the ratio between the points

classified as road with respect to the total number of point within each

cell.

CRFOG[i, j] =
nroad[i, j]

N [i, j]
(4.2)

Here nroad[i, j] represents the number of points falling inside the [i, j]

cell of the occupancy grid that was classified as road. The value N [i, j]

represents the total number of points within the same cell.

4.4 Temporal Integration

Perceiving the overall structure of an intersection from a single image

is a hard task due to the unavoidable problem related to changes in the

appearance. Moreover, processing every single frame with the afore-

mentioned classifiers usually leads to unstable estimates, thus leading to

http://www.ira.disco.unimib.it/iralab/intersection-detector
http://www.ira.disco.unimib.it/iralab/intersection-detector
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(a) Original Left Camera Image

(b) Reprojection of the Classified Image in the Point Cloud

evaluated with the ELAS algorithm

(c) The CRFOG

Figure 4.8: The CRFOG creation pipeline. The resulting classification is overlayed

to the original left-camera image in Figure 4.8a. The Figure 4.8b shows the resulting

classified point cloud where the green color represents the road, the blue the sidewalks

and with red the vertical category.
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temporary unstable occupancy grids. We tackle this problem by leverag-

ing the temporal coherence between road models computed in consecu-

tive frames, and corroborating the results in both our occupancy grids.

To handle probabilities derived from multiple knowledge we evaluated

the following methods for a more detailed description of the three inte-

gration approaches.

• Bayesian derived approach

• Evidence Theory, i.e., Dempster–Shafer Theory

• Proportional Conflict Redistribution rule no. 6 (PCR6) derived

from the Dezert-Smarandache Theory D(SmT) [199].

Although we refer the reader to Section 5.3.3 for a numerical comparison

of the results, Figure 4.9 shows the best outcomes, achieved exploiting

the PCR6 rule. From a technical perspective, the approach relies on a

set of temporally integrated occupancy grids that are updated after every

detection by means of the PCR6 rule. According to the Dempster-Shafer

theory, each cell of the occupancy grid contains the p probability value

of being road area, the q value (q = 1 − p − u ), i.e., the probability of

the cell being not-road, and the binary value u representing whether or

not the area is unknown, see e.g., [200]. These considerations allowed us

to correctly handle the unknown space, which cannot be handled using

a simply Bayesian approach.

4.5 Increasing the classification consistency

In order to further increase the temporal coherence of the classification

estimates in both the PCLOG and the CRFOG, a temporal hysteresis on

the classification values has been introduced, so that multiple same-class

classifications increase the classification belief over each cell of the oc-

cupancy grids. We integrate a dual-counter scheme as follows. For each

cell, the first counter sums how many times the area has been observed

(for many reasons, e.g., occlusions, the 3D reconstruction might not be

able to observe points in some area). The other counter starts from the

allowed number of consecutive frames the area will be kept as valid even

if not observed, and it is decreased each time the area is not observed.

Finally, we reset it when it gets a new observation. If this counter reaches

zero the classification of the cell is reset to unknown. The allowed num-

ber of consecutive no-observation frames is bounded on both sides; in
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(a) PCLOG (b) CRFOG

(c) Bayes Integration (d) Dempster-Shafer Integration (e) PCR6-Rule Integration

Figure 4.9: In the picture, an integration example between the PCLOG Figure 4.9a and

the CRFOG Figure 4.9b using respectively the a Bayesian approach, the Dempster-

Shafer theory and the PCR6 rule. The blue areas represent the unknown space (only in

Dempster-Shafer and PCR6).
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Figure 4.10: The SENSOROG is computed using the results from the PCLOG and the

CRFOG, expoiting the PCR6 rule, after a further noise-filtering procedure performed

on the both occupancy grids.

between it equals the current value of the first counter. The two occu-

pancy grids are then joined using again the PCR6 rule, resulting in a new

occupancy grid called SENSOROG. The overall scheme used to evaluate

the final SENSOROG is depicted in Figure 4.10.

4.6 Scoring Function and Classification

To evaluate a hypothesized upcoming intersection using the obtained

sensor measure, i.e., the SENSOROG, we leverage the proposed inter-

section model shown in Figure 4.2a. We took our inspiration from the

work presented by Geiger [20], by extending it to accommodate not sym-

metric intersections like in Figure 4.11. Moreover, we increased its ex-

pressiveness by allowing the model to represent intersections with more

than 4 incidence roads and different widths for each road. The model

has the following parameters, which are dynamically determined with

respect to the vehicle position:

• The distance c of the intersection center, with respect to the vehicle

position;

• The number n of road segments (arms) involved in the intersection;

• For each arm i, the width wi and its orientation ri with respect to

the current road segment.
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(a) Original Geiger Proposal.

Please notice the symmetry in

the front road.

(b) Our proposal, without sym-

metry in the front road.

(c) Our proposal, with different

road widths.

Figure 4.11: The figure depicts different intersection configurations represented using

our model. A comparison between the model proposed by Geiger [20] is presented

in Figures 4.11b and 4.11c with respect to the original proposalFigure 4.11a, where

symmetry and width are evaluated using a per-road scheme.

Using this model we are able to generate almost every type of inter-

section, except the ones that can be better represented by roundabouts.

The model allows us to generate a new set of occupancy grids, called

EXPECTEDOGs, which represents a set of hypothesized intersections.

These new grids, which are homogeneous to the SENSOROG, allows

us to tackle the intersection geometry classification using a probabilistic

basis, thus modeling the real-world uncertainties. The EXPECTEDOG

represents an expected sensor reading, and the comparison of the two

enables us to accommodate the uncertainties of our detector. From a

technical perspective, as the two grids are represented as images, we can

score every EXPECTEDOG by means of a similarity check with respect

to the SENSOROG grid. We exploited the normalized correlation coef-

ficient function, which have been proved to be give good results even for

complex scenarios.

This comparison allows us to make two considerations. On the one

hand, measuring the likelihood of the SENSOROG with respect to a

hypothesized position of the vehicle allow us to discriminate different

vehicle positions by means of a new Layout Component. Let us consider

a very cluttered scenario where the previous Layout Components fail to

disambiguate two vehicle positions as it might happen within a city-like

scenario. In such situation, detecting the configuration and the distance

from the center of the intersection would help us.
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On the other hand, we can also exploit the proposed detection pipeline

to evaluate the performances of the approach with respect to the state-of-

the-art algorithms in the intersection recognition field. These algorithms

usually clusterize the feasible configurations using the 7 patterns shown

in Figure 4.2b. Our results are presented in Section 5.3.

4.7 Conclusions

In this chapter, we have presented an probabilistic approach for the de-

tection and the classification of upcoming road intersections. As a first

step towards a semantic analysis of the scene, the algorithm aims at clas-

sifying the road topology by means of dual classification, geometry and

pixel-level. The main contributions are:

• A pure geometric evaluation of the road surface through a 3D point-

based scene reconstruction pipeline. The pipeline leverages the

ELAS algorithm and a point cloud processing phase, but fails to ef-

fectively discriminate sidewalks areas and generally all roads with-

out road boundaries clearly marked by height discontinuities. A

Point Cloud Occupancy Grid is generated in this phase (PCLOG).

• We then introduce a second classification step within a Conditional

Random Field (CRF) approach, where an image analysis process is

performed. We exploit the Texton approach for the unary potentials

and a superpixel scheme for the pairwise potentials of the CRF,

generating a second classification that we called CRFOF.

• The calculated occupancy grids are integrated over time using the

PCR6 rule in order to handle the uncertainties and the missing in-

formation. The integrated grids are then fused into the final SEN-

SOROG.

• Using the vehicle position gathered from the Layout Component

and the OpenStreetMap data, we generate the EXPECTEDOG us-

ing an enhanced intersection model that we derived from [20]. The

EXPECTEDOG is then matched with respect to the SENSOROG,

allowing us to discriminate the intersection type with respect to

the 7 common patterns found in the literature. Moreover, we for-

malized a new Layout Component (road intersection) for the Road

Layout Estimation framework, which that potentially enables the
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framework to disambiguate localization hypotheses by means of

the analysis of the upcoming intersection.
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Chapter 5

Experimental Evaluation

In this chapter, we present the experimental evaluation of the Road Lay-

out Estimation framework and the detections of Layout Components pre-

sented in the previous chapters.

In Section 5.1 we present a first evaluation of the proposed frame-

work. To test the effectiveness, we implemented a map-matching Lay-

out Component that allow the system to localize a vehicle in urban road

settings, using only the road graph retrieved from the OpenStreetMap

service and the Visual Odometry from the LIBViso2 library.

In Section 5.2 we experiment with our second proposal, which lever-

ages the building’s outline information stored within the OpenStreetMap

service. Using this new detector and the associated Layout Component

we show how to decrease the vehicle position in both the lateral and the

longitudinal uncertainty , achieving a lane-level accuracy in positioning

in urban areas.

In Section 5.3 we experiment with our intersection detection pipeline.

A comparison with other state-of-the-art approaches shows that our ap-

proach achieved a significant gain in terms of detection accuracy.

In order to evaluate the proposed framework, we used the challeng-

ing KITTI dataset [201], whenever possible. Regarding the intersection

detector, we introduced a new set of annotations that are publicly dis-

tributed1 for further comparisons and evaluations in the context of inter-

section detection.

In Section 5.4 we experiment with the lanes and width tags of Open-

StreetMap, by evaluating the results of a simple line detector and tracker.

1http://ira.disco.unimib.it/iralab/intersection-detector

http://ira.disco.unimib.it/iralab/intersection-detector 
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All the sections provide a critical interpretation of the achieved re-

sults, suggesting the advantages of the approaches yet stressing the main

weak points.

5.1 OpenStreetMap Matching Pipeline

In Section 3.2 we demonstrated the flexibility of the Road Layout Esti-

mation framework by applying it to the problem of vehicle localization.

Here we prove the effectiveness of our proposal by comparing the lo-

calization accuracy achieved by our framework in comparison with the

similar, yet state-of-the-art method presented in [9]. We tested our ap-

proach on ten well-known KITTI [201] sequences chosen from the roads

and residential categories with complex road scenarios, in order to stress

the system with non-trivial environments. To evaluate the localization

capabilities, for each dataset sequence we initialized the localization hy-

potheses spreading them with a normal bivariate distribution, centered

on the first available GPS position. We used a purposely amplified un-

certainty of 60 meters as 3 σ, in order to scatter the initial hypotheses

on a wide area. Then, a lock-on-road procedure was performed, mov-

ing and aligning position and orientation of the Layout Hypotheses to

the nearest road segments. In the case of a two-ways road, a pair of

Layout Hypotheses were then generated, one for each driving direction,

in order to cope with the GPS lack of orientation (during initialization

we are using one GPS measure only). During the experiments, we used

a constant number of 80 Layout Hypotheses and ran all the datasets at

natural speed. Using this configuration, we achieved nearly real-time

performances, with a processing frequency of about 9.6 Hz, very close

to the KITTI stereo camera frequency of 10 Hz. Figure 5.4 shows an

overview of the localization results on some tested KITTI dataset se-

quences, while Table 5.1 summarizes the localization accuracy results

in terms of the root mean square error (RMSE). In particular, the last

two columns represent the calculated RMSE between the vehicle pose

estimated by our framework and, respectively, the OpenStreetMap road

graph information and the GPS-RTK groundtruth.

Beside the comparison with respect to groundtruth, we also present

the OpenStreetMap road graph comparison. The reason, as further dis-

cussed in Section 5.1.2, is that OpenStreetMap road graphs are designed

to represent the geo-localized center of the road. Therefore, since our
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(a) (b)

Figure 5.1: Here the accumulated Visual Odometry error is shown. We used the well

known LIBViso2 [202] library. The blue area identifies the sequence dataset starting

point, the yellow trace the LIBViso2 estimated vehicle position and the green ellipse

the estimated final position area (3σ). Please note that here the trace represent the x-

axis arrows in an z-forward reference system and thus it is orthogonal to the vehicle

forward motion.

system uses this information to compensate the Visual Odometry error

cumulation (as depicted in Figure 5.1), the resulting localization esti-

mate has a systematically offset of half the size of the roadway as the

KITTI vehicle was moving inside a lane and not on the centerline. This

is summarized by the two average values over the ten dataset sequences,

i.e., 0.936 m with respect to the OpenStreetMap topometric map and

1.688 m with respect to the GPS groundtruth. When compared to the

results of [9] (7.396 m), the localization accuracy of our framework is

more than four times more precise relating to the GPS groundtruth and

an order of magnitude with respect to the OpenStreetMap reference.

5.1.1 Weak Points

The main weakness of the algorithm is related to the systematic offset

introduced by the OpenStreetMap service. Since our system uses the

road graph as a reference in the scoring function, i.e., the likelihood

of a hypothesis close to a road segment is higher, a misalignment in

the road graph leads to a systematic bias. Common scenarios include

decentralized road segments, abrupt curves or intersections, where the

OpenStreetMap road graph does not approximate the smooth curvature

of the road. An example of the curve situation is detailed in Figure 5.2.

As a drawback, we had a slight inflated error in proximity to intersec-

tion areas, where the pure geometric road graph does not approximate
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the smooth car trajectories followed by the driver. Despite this artifi-

cial injected error, promising results were obtained by the framework.

Nevertheless, even considering that these misleading conditions could

be substantially reduced by the forthcoming high definition maps, we

argue that a robust localization algorithm needs to take into account also

other road features, as to reduce the aforementioned systematic error and

thus to achieve a more accurate lane-level localization.

It is important to notice that in case of complex road network sce-

narios, even with high injected uncertainties the framework successfully

localized the vehicle after a modest distance covered, implying that the

framework could also cope with a rough global localization task even

without any further Layout Component, getting closer to the results ob-

tained by more complex vision-based approaches available in the litera-

ture like [105].

5.1.2 Discussion

Relying on topometric maps as the only global information to perform

road vehicle localization may lead to indiscernible situations. For ex-

ample, let us consider the situation depicted in Figure 5.3. The red line

represents the groundtruth path the vehicle actually traveled, while the

yellow lines are the road segments from the topometric map. As it can

be seen, the vehicle has been traveling in the rightmost lane for a while,

eventually turning onto the ramp, while the map road segment of the

ramp splits just immediately before the ramp. Evaluating the localiza-

tion hypotheses with respect to the road segments unavoidably leads to

an inaccurate localization estimate, represented by the green line. This

kind of treacherous situations arise very frequently even on ordinary,

non-splitting roads, where the map road segments run in the very center

of the roadway, while vehicles are of course driving in lanes. In other

words, while we have normally a match at the symbolic level between

map and sensor data, we might have from time to time a semantic gap.

Considering the case above, we have a semantic gap in the lane number

as the vehicle travels the part of the road with an extra lane, which will

become the ramp. The modularity of the proposed framework provides

a means to tackle such disambiguation problems. For the case above,

leveraging a state-of-the-art line detector, would allow to cope with the

displacement between the topometric map (roadway center) and the ac-

tual lane the vehicle is driving in. An alternative solution may take into



90 Chapter 5. Experimental Evaluation

(a)

(b) (c)

Figure 5.2: Figure 5.2a: small localization failure introduced by using the OpenStreet-

Map information to compensate the Visual Odometry error cumulation. The red line

represents the groundtruth path of the vehicle, while the localization estimate is repre-

sented by the green line. The error is due to the coarse road model in OpenStreetMap

(see Figure 5.2b), as opposed to the smooth trajectories followed by the vehicles. Fig-

ure 5.2c shows a flawless yet uncommon road approximation.
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account the width of the road. These two considerations will be dis-

cussed in Section 5.4.

5.2 Buildings Localization Enhancements

This section discusses the results achieved using the Building Detector

and the associated Layout Component presented in Section 3.3. The

algorithm aims to enhance the initial rough road-level localization shown

in the previous section, by means of a pure geometric building façades

detector. The results are matched to the building outlines provided by

the OpenStreetMap service, in order to reduce the uncertainty of the

localization.

We tested our approach on 11 sequences from the well-known KITTI

benchmark suite, choosing urban and city sequences containing both

basic and challenging scenarios. During the evaluation activity, we ini-

tially downloaded all the buildings outlines of the involved area from the

OpenStreetMap service, in order to avoid any network delay. For each

dataset sequence, we initialized the localization hypotheses spreading

them with a normal bi-variate distribution, centered on the first available

GPS position, using a slightly amplified uncertainty of 2 meters as 3σ,

in order to scatter the initial hypotheses on a road area. Differently from

the tests in Section 5.1, here we aim to stress the lane-level localization

performances and thus higher uncertainties are not required. We would

have initialized as before, and then excluding from reporting the tran-

sient of the previous section localization system, with the only net result

of loosing part of the evaluation dataset.

5.2.1 Experimental results

We started the experimental activity exploiting the previous OpenStreet-

Map Matching Layout Component, which allows us to have a rough, yet

locked-on-road, localization estimate by means of a road-network local-

ization. The error of this system can be considered to have reached its

regime, because of the more accurate localization. Then, to evaluate the

localization enhancement, we activate the Building Layout Component

letting the framework combine the building information with the road

graph.

Figure 5.5 shows an overview of the localization improvements on

some tested KITTI dataset sequences, while the Figure 5.6 depicts how
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(a)

(b)

Figure 5.3: Figure 5.3a depicts an example of a treacherous situation where the topo-

metric information provided by OpenStreetMap is not sufficient to correctly localize

the vehicle. The red line represents the groundtruth path the vehicle, while the yellow

lines are the road segments from the topometric map. In such a situation, evaluating

the localization hypotheses with respect to the road segments unavoidably leads to the

inaccurate localization estimate represented by the green line. Figure 5.3b shows how

the localization estimate fail to correctly track the real position of the vehicle once the

vehicle turns to the exit lane.
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Figure 5.4: Localization results on the KITTI dataset. The red line represents the

groundtruth path of the vehicle, while the localization estimate is represented by the

green line.
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Table 5.2: Kitti sequences used for experimental evaluation of the Buildings Detector

Sequence Category Sequence Length Sequence Length

Name (mm:ss) (m)

2011 10 03 drive 0027 Residential 7:50 2651.92

2011 10 03 drive 0034 Residential 8:03 2872.90

2011 09 30 drive 0018 Residential 4:47 2205.77

2011 09 30 drive 0020 Residential 1:53 1227.57

2011 09 30 drive 0027 Residential 1:53 693.12

2011 09 30 drive 0028 Residential 7:02 3204.46

2011 09 30 drive 0033 Residential 2:44 1700.71

2011 09 30 drive 0034 Residential 2:04 918.99

2011 09 26 drive 0005 Residential 0:16 66.10

2011 09 26 drive 0046 Residential 0:13 46.38

2011 09 26 drive 0095 Residential 0:27 252.63

TOTAL 36:16 mm:ss 15475.44 m

Sequence Name RMSE (m) RMSE (m)

Road Graph Only Road Graph and

Building Data

2011 09 26 drive 0005 2.52 1.92

2011 09 26 drive 0046 2.40 1.64

2011 09 26 drive 0095 2.66 1.47

AVERAGE 2.53 m 1.68 m

Although we evaluated the building detection pipeline on all the sequences shown in

the first part of the table, here we report only the results in the last three sequences in

which our detection manage to increase the localization accuracy. The strong presence

of vegetation, as well as other cluttering elements (as depicted in Figures 5.7a to 5.7c),

in combination with our pure-geometric approach, have shown sub-optimal results

that lead us to believe that a reliable building detector has to consider also typical

façades features by means of image processing, thus enhancing the geometric plane

detection pipeline proposed in this work. We nevertheless obtained remarkable results

in good scenarios like Figures 5.7d and 5.7e, and the system was able to cope with

ambiguous scenarios, and localize the vehicle accurately.
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(a) Using the OpenStreetMap road segments only. (b) Including the OpenStreetMap building data.

(c) Using the OpenStreetMap road segments only. (d) Including the OpenStreetMap building data.

Figure 5.5: The results of a localization run. The red and green straight lines rep-

resent the OpenStreetMap road segments. The green dots represent the groundtruth

path of the vehicle, while our localization estimate is represented using white dots. In

Figure 5.5a performance using only the road segments, our previous approach. The

misaligned dots are due to the coarse road model in OpenStreetMap, as opposed to

the smooth trajectories followed by the vehicles. Figure 5.5b depicts the results of

the proposed approach. The misalignment reduction is clearly visible in Figures 5.5c

and 5.5d. Please note that the systematic offset with respect to the satellite image is

due to an approximation of the latitude and longitude of our visualization software.
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the Layout Component allow the framework to score a localization hy-

pothesis in the proximity of an intersection area, thus exploiting not only

the lateral buildings but also the structures on the opposite side of the

crossing.

In Table 5.2 we present all the sequences we used in the experimen-

tal activity, which includes residential areas from the Karlsruhe city in

Germany. The second part of the same table summarizes the localiza-

tion accuracy results in terms of the Root Mean Square Error (RMSE)

with respect to the best results achieved within our test. In particular,

the last two columns respectively represent the calculated RMSE be-

tween the vehicle pose estimated by the framework without the building

component and the same framework with the building component acti-

vated. Beside the comparison with respect to ground-truth, Figures 5.5c

and 5.5d shows how the building detections can reduce the lateral uncer-

tainty while the vehicle is traveling on the road so as to achieve a remar-

kable lane-level localization. Moreover, since crossing areas are usually

surrounded by buildings, in the context of residential areas, the algo-

rithm also provides an enhancement in terms of longitudinal localization

by smoothing the trajectories arising in the no-building algorithm, i.e.,

leveraging the OpenStreetMap network only.

5.2.2 Discussion

The proposed algorithm presents the following drawbacks. First, the

façade detection relies on a purely geometric pipeline, which is based

on the point-cloud calculated from the stereo images. Since we did not

introduce any clutter removal algorithm, it follows that misleading sce-

nario configurations may lead to wrong plane detections, as depicted

in Figures 5.8a and 5.8b. Other potential errors arise from incorrect

perceptions like in Figure 5.7, where planes are fitted over hedges and

dense fences. A second and more specific issue arises from the geomet-

ric approach. Since we compare plane-to-plane distances, i.e., modeling

the façade plane equations from the point cloud and, on the other hand,

generating them from OpenStreetMap outlines, a misalignment between

consecutive buildings such as in Figure 5.8c may introduce a bias in the

localization process and thus lead to indiscernible hypotheses, even con-

sidering the distance from the road center. The problem is related with

the infinite planes equations and the winner-takes-all strategy described

in Section 3.3.6. An example of this problem is depicted in Figure 5.8c
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(a) In this figure, the building façades are projected in the 3D space considering a good localization

hypothesis and thus leading to a good alignment with respect to the OpenStreetMap outlines.

(b) In this figure the 3D projections are misaligned due to the incorrect localization hypothesis.

Figure 5.6: In the figures we show the matching process that allows the algorithm

to score the localization hypotheses. In both the figures, the yellow box on the right

part of the image identifies the Layout Hypothesis which is being evaluated. As can

be easily noticed, in Figure 5.6a the detection of the two façades is almost overlapped

with respect the the OpenStreetMap outlines while in Figure 5.6a a slight misalignment

may be observed. Please notice that both the figures show the points associated to the

façade rather than the plane equation.
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where the big green and blue lines represent the infinite edges of the

façades gathered from the OpenStreetMap, which are associated with

the buildings with labels A and B. Under these circumstances the lo-

calization hypothesis H1 represented with the red car has a lower score

with respect to the hypothesis H2, since the likelihood of the distance

measured by the detector is greater in H2. On the one hand, a possi-

ble solution to this issue may arise from a smarter comparison which

takes into consideration also the front distance of the building façade.

On the other hand, we may tackle the issue introducing a probabilistic

approach, by means of a sensor model aimed at handling this kind of

uncertainties and thus allowing the framework to handle these treacher-

ous situations. In spite of the aforementioned workarounds, we believe

that reliable solution would also necessarily include an additional image

processing step aimed at disambiguate also the problem of Figures 5.8a

and 5.8b.

Considering on the weak side, we note that the detection pipeline has

not yet achieved real-time performances. One of the main issues is lies in

the façades research phase, in which the Region Growing Segmentation

algorithm drastically limits the performance of the detection, consuming

nearly the 70% of the time, as depicted in Figure 5.9.

Related to geometric pipeline and its parametrization, in this per-

frame analysis we do not include any temporal clue, e.g., a temporal

integration of the perceived 3D point-cloud. Despite these limitations,

the algorithm has proved its effectiveness in the context of urban loosely-

cluttered environments, enhancing the localization accuracy and com-

pensating the rough localization achievable using only the road network

as proposed in Section 5.1. Therefore, although we would classify this

part of the work as in progress, we believe we demonstrate this to be an

effective visual clue, in order to achieve lane-level localization accuracy.
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(a)

(b)

(c)

(d)

(e)

Figure 5.7: In Figures 5.7a to 5.7c typical scenarios where the pure geometric pipeline

fails to fit geometric façade plane models. The issues arise from incorrect perceptions

on hedges and fences. Figures 5.7d and 5.7e depicts two positive contexts, in which

the proposed algorithm modeled properly the building’s façades.
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(a)

(b)

(c)

Figure 5.8: The figure depicts an erroneous classification with a pedestrian sign mis-

interpreted as a façade. Due to the thresholds used in the segmentation phase and

the pure-geometric pipeline, the buildings on the right contains less 3D points than the

ones belonging to the sign, causing the procedure to reject the point lying on the façade.

Figure 5.8c depicts a toy example where the plane-to-plane problem is highlighted.
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Figure 5.9: The figure depicts the most time-consuming phases of the Building Detec-

tion Pipeline. We recall that the pre-processing phase consists of two phases (cropping

and surface normal evaluation ) and the façade enhancement is aimed to extract build-

ing clusters from the surfaces within the Façade Detection phase (which involves the

Region Growing Segmentation algorithm).

5.3 Intersection Detection

This section presents the results of our on-line intersection topology de-

tector introduced in Chapter 4. The processing pipeline in this case was

tested with an exhaustive experimental activity aimed at proving its va-

lidity in urban scenarios. We validated our system on the 8 sequences

shown in Table 5.3, taken from the KITTI dataset [201]. Unlike the other

detectors presented in this thesis, which were integrated within the Road

Layout Framework as Layout Components, here we focus on achiev-

ing the best intersection topology classification. The reason is related

to the insufficient results of our initial intersection detection pipeline,

which leveraged a pure geometric scheme similar to the building detec-

tion pipeline presented in Section 3.3. Accordingly to this consideration,

the experimental activity related to section of is not focused on timing

performances. To evaluate the classification performances, we chose

challenging residential sequences including different road configuration

scenarios, as to demonstrate the detector classification capabilities with

respect to the 7 crossing patterns shown in Figure 5.10. The ground truth

used for the assessment was created by manually annotating each frame

of the sequences with the appropriate topology. In particular, we set the

topology label [1..7] when the vehicle is approaching the intersection,

i.e., when it is less than 30 meters from the intersection. Moreover, we
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(Type 1) (Type 2) (Type 3) (Type 4) (Type 5) (Type 6) (Type 7)

Figure 5.10: The 7 crossing topologies usually used in state-of-the-art approaches.
Table 5.3: Kitti sequences used for experimental evaluation of the intersection detector

Sequence Reference Name Sequence Category GPS-RTK (m)

2011 10 03 drive 0027 7:50 Residential 2,651.92

2011 10 03 drive 0034 8:03 Residential 2,872.90

2011 09 30 drive 0018 4:47 Residential 2,205.77

2011 09 30 drive 0020 1:53 Residential 1,227.57

2011 09 30 drive 0027 1:53 Residential 693.12

2011 09 30 drive 0028 7:02 Residential 3,204.46

2011 09 30 drive 0033 2:44 Residential 1,700.71

2011 09 30 drive 0034 2:04 Residential 918.99

TOTAL 36:16 15,475.44

included in the classification a flag (called crossing flag) that indicates

whether the vehicle is moving within the intersection boundaries. We

use the flag to make it clear when the topology ”is hidden” by the vehi-

cle being into the intersection.

Believing that further research is required in the road intersection de-

tection context and to allow future researchers to compare their work

with respect to ours, we also published our KITTI annotations on-line2

and some of these annotations are shown in Figure 5.11.

5.3.1 Experimental Results

With respect to the experimental setup, we made the following consider-

ations. During the evaluation activity, as to achieve comparable results

with respect to the state-of-the-art method proposed by Ess et al. [21],

we limit the ground truth to a distance with respect to the intersection

no less than 20 m. It follows that the results of the detector are com-

pared only in straight roads and up to 20 meters from the crossing area.

Moreover, since at this time the detections are not meant to enhance a

localization hypothesis, i.e., the system is not yet integrated as a Layout

Component, we evaluated the detector using the ground truth positioning

data, removing localization ambiguities.

In order to generate the EXPECTEDOG occupancy grids associated

2These annotations are available at: http://www.ira.disco.unimib.it/intersection-ground-truth

http://www.ira.disco.unimib.it/intersection-ground-truth
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(a) Frame: 0000000122; Distance: 7.28011 m; Crossing Topology: 7; In Crossing: true

(b) Frame: 0000000000; Distance: 10.4403 m; Crossing Topology: 7; In Crossing: false

(c) Frame: 0000000393; Distance: 21.0238 m; Crossing Topology: 6; In Crossing: false

(d) Frame: 0000000086; Distance: 32.7567 m; Crossing Topology: 1; In Crossing: false

Figure 5.11: Some examples from the proposed intersection groundtruth, ordered by

distance from the center. The figure labels show: frame number, distance from crossing

center (from OpenStreetMap, considering the RTK), crossing topology, in crossing flag

(false/true). We set the intersection topologies as soon as the vehicle is 30 meter or less

from the crossing center (as detected from OpenStreetMap).
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(a) (b) (c) (d)

Figure 5.12: The EXPECTEDOG are generated considering all the hypotheses shown

in Figure 5.10. Considering the topology and the w and r parameters of the nearest

intersection, the remainder of the topologies are then modified by applying the retrieved

information.

with the different intersection hypotheses, we leveraged the OpenStreet-

Map service by retrieving the geometry of the closest intersection along

the traveling direction, i.e., the c, n, wi and ri parameters of the inter-

section model proposed in Chapter 4 and shown in Figure 4.2a. Using

these parameters, we sample 6 new hypotheses as to complete the 7 pat-

tern candidates shown in Figure 5.10 by means of the following scheme.

The expected occupancy grids are generated by spatially sampling the

intersection hypotheses, i.e., considering the w and r geometric proper-

ties of the nearest intersection extracted from the OpenStreetMap service

and applying it to all the 7 topologies that we take in consideration. This

expedient allows us to maintain a limited number of hypotheses, yet con-

sidering all the 7 patterns in the evaluation process. An example of the

sampled EXPECTEDOGs is shown in Figure 5.12.

After their generation, a score is associated to each EXPECTEDOG by

means of the template matching procedure proposed in Section 4.6, al-

lowing the detector to identify the intersection topology. The results

of the experimental activities are summarized in the form of the confu-

sion matrices shown in Figure 5.14, which compares how many times

each topology has been correctly classified with respect to all the frames

where such topology appears in the sequence (indicated at the end of

each row). In all the experiments we evaluated the nearby intersections

only if it was totally visible, therefore we never took into account the

frames where the in crossing flag was set to true.

In Figures 5.14d to 5.14f we show the overall confusion matrices of

all the meaningful sequences, except for the difficult sequence shown in

Figure 5.13. To better stress the importance of the achievable results,
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(a)

(b)

(c)

Figure 5.13: In Figure 5.13c the resulting confusion matrix after the evaluation on

the difficult 2011 09 30 drive 0034 sequence. A frame from the sequence containing

a brick-paved road is shown in Figure 5.13a, while Figure 5.13b contains an uneven

surface. In such a situation, evaluating the intersection hypotheses unavoidably leads

to a wrong estimate. Please note that the right topology that was always misinterpreted

as left contains only 9 uphill roads (last column outside the matrix).
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(a) 2011 10 03 drive 0027

filtered at 10m

(b) 2011 10 03 drive 0027

filtered at 15m

(c) 2011 10 03 drive 0027

no filter

(d) All sequences

filtered at 10m

(e) All sequences

filtered at 15m

(f) All sequences

no filter

Figure 5.14: The confusion matrices show the results after the evaluation on the used

KITTI sequences. Each row ends with the total frames number of each intersection

configuration. In the first row we show the results using the 2011 10 03 drive 0027

sequence, filtering the intersection topology detections using 10m or 15m as to eval-

uate the detections while gradually increasing the detection difficulty (the third matrix

includes the complete sequence). In the same way, the second row summarizes the

results of the approach over all the used KITTI sequences shown in Table 5.3. For a

comparison with the state-of-the-art results, we refer the reader to Figure 5.15.

in Figures 5.14a to 5.14c we present the results on the longest sequence

2011 10 03 drive 0027.

In Figures 5.14a and 5.14d, we filtered the results as to hold only

the frames taken at less than 10 meters from the intersection, whereas

in Figures 5.14b and 5.14e the threshold value was set as to include

images taken up to 15 meters and in Figures 5.14c and 5.14f we took

into account all the sequence (without any limitation).

5.3.2 Image Classification Assessment

Our semantic segmentation pipeline hinges on two classification steps.

As described in Section 4.3, following the TextonBoost approach pro-

posed by Shotton et al. [62], the first classification step relies on a per-

pixel analysis (which creates the so-called unary potentials) supported

by a second step refinement phase, by means of a CRF approach. With
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(a) SUTSU (b) GIST

Figure 5.15: For a comparison with the state-of-the-art results, we refer inserted here

the confusion matrices of the SUTSU and GIST algorithms presented in [21]. Please

note that we do not consider the place class, i.e., we do not recognize whether the

vehicle is inside the intersection.

respect to the CRF approach, we used the PyStruct inference library pro-

posed by Mueller [203], using in all the training and validation phases

the dataset sequences proposed in Section 4.3.1 together with the k-fold

cross validation technique. In order to evaluate the per-pixel unary po-

tentials, which are then used within the CRF approach, we train the

multi-feature variant of the TextonBoost algorithm proposed in the work

of Ladický et al. [204], which creates a texton map vector by evaluat-

ing Location, Color, Histogram of Oriented Gradients (HOG) and the

17-dimensional filter-bank suggested in [62] (an example of the features

is shown in Figure 5.16). The quantitative evaluation of the achieved

performance was obtained using the standard Precision, Recall and F1

measures defined as follows:

precision = TP
TP+FP

(5.1)

recall = TP
TP+FN

(5.2)

F1 =
2TP

2TP+FP+FN
(5.3)

We achieved satisfying results for the unary classification phase, with

a good F1 value equals to 0.93 for the road surface class (other results are

summarized in the first row of Table 5.6). After the per-pixel evaluation,

we trained the CRF model varying both the inference algorithm as well

as the pairwise configuration schemes. According to the PyStruct docu-

mentation, we changed the CRF configuration modifying the following

parameters:

• the Superpixel algorithm,
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(b) Color Textons (c) HOG Textons

(d) Filter-bank Textons (e) Location Textons

Figure 5.16: Texton maps evaluated on a frame from the KITTI dataset.

• the Edges connection model (i.e., the feature vector used to weight

the spatial dependency between the superpixels),

• the Symmetric and Antisymmetric Edge properties,

• the composition of the Vector used to weight the superpixel depen-

dencies, accordingly to Table 5.5.

An exhaustive evaluation of the capabilities of the proposed CRF con-

figuration was performed by means of the 17 tests proposed in Table 5.4

and the results are presented in Table 5.6. The parameters highlighted

has proven to be slightly more effective with respect to the others.

The Figure 5.17 shows the qualitative results of the unary classifica-

tion along with each CRF refinement, with respect to the road, sidewalk

and other classes. As shown in the figure, the spatial consistency con-

straint of the CRF provides smooth sidewalk classifications, decreasing

the typical scattering effect arising from per-pixel algorithm. However,

as can be noticed in the third and sixth columns of the Table 5.6, the spa-

tial coherence introduced with the CRF did not give the expected perfor-

mance gain with respect to the road classification task. In particular, we

have noticed that the image disparity information did not introduce en-

hancements in the CRF classification. Given the good results reported in
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Table 5.4: In the following 17 tests, we evaluate the CRF classification results modify-

ing the underlying structure configuration.

Test Superpixel Vector Symmetric Antisymm Connect. Inference

Algorithm Code Edge Edge Scheme Algorithm

1 SLIC 1 no no Pairwise qpbo

2 SLIC 2 no no Pairwise qpbo

3 SLIC 3 no no Pairwise qpbo

4 SLIC 4 no no Pairwise qpbo

5 SLIC 3 yes no Pairwise qpbo

6 SLIC 3 yes yes Pairwise qpbo

7 SLIC 3 no yes Pairwise qpbo

8 SLIC 3 yes yes 3-Extend qpbo

9 SLIC 3 yes yes Pairwise ad3

10 quickshift 3 yes yes Pairwise qpbo

11 SLIC-zero 3 yes yes Pairwise qpbo

12 quickshift no no no Pairwise qpbo

13 quickshift 5 yes yes Pairwise qpbo

14 quickshift 5 yes yes 3-Extend qpbo

15 quickshift 5 yes yes 10-Extend qpbo

16 quickshift 5 yes yes 5-Extend qpbo

17 quickshift 3 yes yes 3-Extend qpbo

Regarding the superpixel segmentation, we tested the following methods: the Quick-

shift [205], SLIC [206] and SLIC-zero variant, which are are available within the

Python scikit-image [207] library. The details of the feature code value, represent-

ing the superpixel dependency vector (i.e.the values associated to the edges between

superpixels, in the pairwise scheme), is shown in Table 5.5. Finally, the highlighted

row indicates the best configuration. Surprisingly, this configuration does not leverage

the disparity information in the edge scheme.

Table 5.5: Vector Codes

Vector Contrast Superpixel Disparity Orientation

Code Function Distance

1 1 no no yes

2 2 no no yes

3 1 yes no yes

4 2 yes no yes

5 1 yes yes yes

In the table, the composition of the five testing feature vectors associated to the edges.

Regarding the Contrast function, we evaluated both the algorithms available within the

PyStruct library. Disparity and Contrast are referred to the average of all pixels in the

superpixel.
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Table 5.6: In this table we show the evaluation measures of both the Unary potentials

(first row) and the CRF configurations.

Test Road All Class

Precision Recall F1 Precision Recall F1

Unary 0.91 0.96 0.93 0.96 0.96 0.96

Test n.1 0.89 0.96 0.93 0.96 0.95 0.95

Test n.2 0.89 0.96 0.93 0.96 0.95 0.95

Test n.3 0.90 0.96 0.93 0.96 0.95 0.95

Test n.4 0.90 0.96 0.93 0.96 0.95 0.95

Test n.5 0.90 0.96 0.93 0.96 0.95 0.95

Test n.6 0.89 0.96 0.93 0.96 0.95 0.95

Test n.7 0.89 0.96 0.93 0.96 0.95 0.95

Test n.8 0.89 0.96 0.93 0.96 0.95 0.95

Test n.9 0.89 0.96 0.93 0.96 0.95 0.95

Test n.10 0.90 0.95 0.93 0.96 0.95 0.95

Test n.11 0.90 0.95 0.93 0.96 0.95 0.95

Test n.12 0.90 0.96 0.92 0.96 0.95 0.95

Test n.13 0.90 0.95 0.93 0.96 0.95 0.95

Test n.14 0.89 0.96 0.92 0.96 0.95 0.95

Test n.15 0.90 0.95 0.92 0.96 0.95 0.95

Test n.16 0.89 0.96 0.92 0.96 0.95 0.95

Test n.17 0.90 0.95 0.93 0.96 0.96 0.96

In this table, the results of both the per-pixel (highlighted row) and CRF (Test 1-17)

classifications by means of the standard Precision Recall and F1 measures.

Figure 5.17: The Figure compares the classification accuracy of the unary potentials

with respect to the CRF approach. From left to right: image from the on-board camera,

ground-truth classification, unary classification, CRF classification.
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Table 5.7: The experimental activity configuration.

Test Number Occupancy Grid Scheme

1 PCL Only

2 CRF Only

3 PCL and CRF method integrated using Dempster-Shafer

4 PCL and CRF method integrated using PCR6

the recent works by Sengupta et al. [68], we believe that the superpixel

configuration employed within the CRF model has negatively affected

the effectiveness of the method, overwhelming the per-pixel classifica-

tion. In spite of these limitations, the next section describes how we can

still exploit each of these classifications to tackle the road intersection

detector scheme.

5.3.3 Geometric vs Semantic Intersection Classification

Differently from the per-pixel classifications shown in the previous sec-

tion, here the task is related to the understanding of the intersection

topology. In order to detect the geometric configuration of the roads, our

approach exploits a bird-eye-view representation of the surrounding road

surface, detected using the algorithms described in Sections 4.2 and 4.3.

Following the scheme proposed in Table 5.7, here we present the individ-

ual results of the aforementioned algorithms, as well as their integration

using the Dempster-Shafer Theory and the PCR6 Rule. We assessed

the performances exploiting the residential 2011 10 03 drive 0027 se-

quence, which contains the highest number of intersections in its cate-

gory.

On the one hand, according to the results shown in Figures 5.18 and 5.19,

the geometric approach tends to better classify the intersection topolo-

gies with respect to the semantic classification but it also favors a detec-

tion even on straight roads, mainly because of the poor curbs identifi-

cation and lack of 3D reconstruction precision. On the other hand, the

CRF approach frequently classifies intersections areas as straight road,

and presents a performance asymmetry with respect to the Type-2 and

Type-3 roads (left or right junctions). From a technical perspective, we

believe that these issues stem from the training dataset, which does not

contain a representative and balanced set of intersections. In spite of

our best efforts, we have not found any good training dataset specifically

designed for the intersection detection evaluation, as the best datasets

like [68,198] include a small subset of intersection images. Even though
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(a) Filtered at 10 m (b) Filtered at 15 m (c) All dataset

Figure 5.18: Test 1. CRF only, with no temporal integration

(a) Filtered at 10 m (b) Filtered at 15 m (c) All dataset

Figure 5.19: Test 2. PCL only, with no temporal integration

(a) Filtered at 10 m (b) Filtered at 15 m (c) All dataset

Figure 5.20: Test 3. PCL and CRF using Dempster-Shafer, with no temporal integra-

tion

(a) Filtered at 10 m (b) Filtered at 15 m (c) All dataset

Figure 5.21: Test 4. PCL and CRF using PCR6, with temporal no integration
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Figure 5.22: We manually annotated extra images in order to obtain a larger and more

representative training set of intersection areas. In the figure, an example of the in-

tersection ground-truth. The dataset can be downloaded from http://www.ira.disco.

unimib.it/iralab/intersection-detector/

we introduced a new set of manually annotated images in the training

phase (containing intersection areas, see Figure 5.22), the spatial co-

herence results did not give a performance gain in road classification.

Despite these critical considerations, the combination of geometric with

semantic classification outperformed each individual classification in al-

most all the experiments. Regarding the integration schemes between

the two classifications, we have tested both the Dempster-Shafer and the

PCR6 rule proposed in the previous chapter. The results, shown in Fig-

ures 5.20 and 5.21, shows that the PCR6 rule allows us to better integrate

conflicting information with respect to the Dempster-Shafer rule.

The overall scheme, presented in Sections 4.4 and 4.5 leverages the

aforementioned results.

5.3.4 Temporal integration

Both the geometric and semantic approaches shown before do not take

into consideration any time coherence scheme. In order to reduce the

negative effect of unstable detections, and differently from the CRF tem-

porally coupling strategy proposed by Floros et al.in [101], here we pro-

pose a temporal integration by means of consecutive occupancy grids

integration.

As shown in Figure 4.10, the overall scheme consists of three process:

• A first integration component related to the integration of the indi-

vidual PCLOG and CRFOG, (shown in Figure 5.23).

• A temporal hysteresis grid of the classified values, so that multiple

http://www.ira.disco.unimib.it/iralab/intersection-detector/
http://www.ira.disco.unimib.it/iralab/intersection-detector/
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same-class classifications increase the classification belief in both

the CRFOG and PCLOG.

• A final fusion of both the PCLOG and the CRFOG along with the

corresponding hysteresis grids.

The results of our temporal integration procedure are shown in Fig-

ure 5.24. In comparison with the results previously shown in Figure 5.14,

the temporal procedure introduce a recognition improvement, that be-

come more meaningful as the vehicle approaches the intersection, as

can be seen in the confusion matrices at 15 and 10 meters.

5.3.5 Scoring Function Assessment

The classification algorithm described in Section 4.6 evaluates the best

intersection topology through a template matching procedure, consider-

ing the detected SENSORSOGs and the hypothesized EXPECTEDOGs.

To validate the overall procedure, we initially assess the scoring func-

tion capabilities with respect to the distance of the intersection center,

exploiting the sequence 2011 10 03 drive 0027 For this purpose, start-

ing from a couple of grids as depicted in Figure 5.26, we slightly move

the mask (i.e., the EXPECTEDOG) longitudinally towards the crossing

center, as a way to verify where the maximum value of the scoring func-

tion is achieved when the two grids are aligned. This is by no means

trivial, since the reconstruction noise and cluttering elements, together

with the road visibility issues, make the recognition process hard. Using

this procedure, we can now assess the maximum distance from which the

crossing can be classified. In Figure 5.25 we show the results of consid-

ering four different Type-7 intersections at 11, 14, 19 and 24 meters from

the vehicle. The x-axis reports the distances at which the EXPECTE-

DOG was moved while the y-axis the associated score. According to the

results, the scoring function shows satisfactory performances up to 15 m

from the intersection and barely sufficient at 18 m.

5.3.6 Discussion

Although the proposed on-line approach showed very good results for

most of the tested sequences, and, to the best of our knowledge, achieved

comparable or better performance with respect to the other comparable

approaches in the literature, we observed some treacherous sequences
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.23: In this figure we show the results of the different temporal integration

schemes, ordered by achieved performances. The second raw depicts the Dempster-

Shafer method and the third row the same integration using the PCR6 rule. For the

sake of completeness, in the first row we report also the temporal integration using the

Bayes scheme, which was definitely not used. Please notice the strong negative impact

on the reconstruction performances, particularly visible in the last column.
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(a) 2011 10 03 drive 0027,

filtered at 10m

(b) 2011 10 03 drive 0027,

filtered at 15m

(c) 2011 10 03 drive 0027 - no

filter

(d) All sequences, filtered at 10m (e) All sequences, filtered at 15m (f) All sequences - no filter

Figure 5.24: As in Figure 5.14, the resulting confusion matrices after the evaluation on

different KITTI sequences, with the temporal integration enabled.

Figure 5.25: We evaluated the scoring function at different distances, sliding the EX-

PECTEDOG from the true position to verify the resulting score. As it can be seen

considering the blue line, the function does not always allow us to distinguish the in-

tersection, and its reliability drops about 15 to 20 meters.
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(a) The intersection > 20 m (b) The intersection ∼ 10 m

(c)

Original

SENSOROG

> 20 m

(d)

Overlayed

EXPECTEDOG

centered.

(e)

Overlayed

EXPECTEDOG

- 5 m

(f)

Overlayed

EXPECTEDOG

+ 5 m

(g)

Original

SENSOROG

∼ 10 m

(h)

Overlayed

EXPECTEDOG

centered.

(i)

Overlayed

EXPECTEDOG

- 5 m

(j)

Overlayed

EXPECTEDOG

+ 5 m

Figure 5.26: In Figures 5.26a and 5.26b, the same intersection at the approximately

distance from the vehicle of 20 m and 10 m. In Figures 5.26c and 5.26g the related

SENSOROGs used for the scoring function assessment, along with three different over-

layed EXPECTEDOGs. In each of the three sequences, the mask was set to the center

of the crossing, then shifted by +5 and -5 meters longitudinally towards the crossing

center.

that led to misleading results. These sequences include scenes with low

image and geometric contrast, with respect to the road boundaries, in-

cluding both geometric and visual clues. For this reason, we consider

that further researches should include other specific road features in the

CRF model, aiming at leveraging the road spatial relations that in this

work we tried to include with the superpixel approach.

Despite this limitations, as it can be seen from the confusion matrices

in Figures 5.18 to 5.21, the best detections were achieved synergically

exploiting the results coming from the integration of the geometric and

semantic pipelines. Moreover, when considering the temporal consis-

tency between consecutive frames introduced in Section 5.3.4, the ap-
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proach shows a good robustness with respect to the individual yet noisy

occupancy grids and the topology classification task.

In Figure 5.13c we provided an example where the proposed ap-

proach was not able to cope with the classification goal, which is part

of the difficult 2011 09 30 drive 0034 sequence. Considering this last

assessment, it is important to note that this sequence represents an ex-

tremely challenging scenario, as it includes brick-paved roads whilst no

images of brick-paved were available for the training phase.

In Figures 5.27 and 5.28 we show some results evenly divided by

three successfully and three erroneous detections. As it is shown, the

detector achieved the best performance when the road boundaries are

well defined. On the other hand, in uphill and downhill scenarios, as

well as in strong shadows, occlusions dominate in the perceived image.

Despite these considerations, we consider that including further crossing

configuration as well sloping roadways in the training database should

allow the imaging pipeline to better cope with these circumstances. Fi-

nally, in Figure 5.29, we show an array of consecutive frames taken from

the final evaluation phase on the 2011 10 03 drive 0027 sequence. Here

we stress the fact the temporal consistency scheme allows us to deal with

the unstable CRF detections, as can be noticed with the more steady oc-

cupancy grids and the consequent detected topology.
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(a)

(b)

(c)

(d)

Figure 5.27: Some examples of the topology reconstruction of our system. On the

upper right of every figure the is reported the real topology (black border) alongside

with the inferred topology (green border for correct prediction, and red for incorrect).

Figures 5.27a, 5.27c and 5.28a: correctly inferred topology. Figures 5.27b, 5.27d

and 5.28b: respectively wrong topology inferred due to strong shadows, downhill roads

and occlusions. See Figure 4.1 for color coding.
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(a)

(b)

Figure 5.28: Some examples of the topology reconstruction of our system. On the

upper right of every figure the is reported the real topology (black border) alongside

with the inferred topology (green border for correct prediction, and red for incorrect).

Figures 5.27a, 5.27c and 5.28a: correctly inferred topology. Figures 5.27b, 5.27d

and 5.28b: respectively wrong topology inferred due to strong shadows, downhill roads

and occlusions. See Figure 4.1 for color coding.
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Figure 5.29: In the images, the intersection classification results as the vehicle ap-

proaches an intersection (consecutive frames). In each sub-image, the first image is the

vehicle’s camera left, with the ground truth and the position images overlayed in the

upper corners. The second image represents the CRF classification only. As can be no-

ticed, the sidewalk is frequently classified as road in successive frames. The temporal

consistency scheme allows us to deal with these unstable detections, as can be noticed

with the more steady occupancy grids. The results of the basic PCLOG and CRFOG

as well as their integration in the SENSOROG is shown in the three images in the last

line, together with the predicted intersection topology.
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5.4 Lane and Lines - Highway case study

In this session we show the preliminary results achieved by leveraging

the two Layout Components presented in Section 3.4. The proposed

algorithms tackle the localization task within highway environments,

leveraging and extending the results achieved by means of the afore-

mentioned OpenStreetMap Matching Pipeline. The approach was ver-

ified exploiting an ad-hoc dataset collected in real driving conditions

using the Drivertive autonomous vehicle (shown in Figure 5.30a) of the

INVETT Research group of the University of Alcalá. The dataset was

taken driving on the A-2 highway area in Espartales Norte, Alcalá de

Henares, Spain.

5.4.1 Road Width Component

The experimental activity was performed by leveraging the Road Lay-

out Framework in the area depicted in Figure 5.30b. Besides the dif-

ferent dataset, we used a configuration similar to the one proposed in

Section 5.1. The only difference was related to the hypotheses initial-

ization phase. Here the latter were initialized considering a narrow un-

certainty area, in order to avoid any localization failure resulting from

a wrong initial lock-on-road procedure. As depicted in Figure 5.31a,

the most common issues regarding the lock-on-road localization pro-

cedures arises in proximity of Y-junctions. The reason is twofold: on

the one hand, due to the lack of in-lane accuracies, the system needs

to artificially injected error as to ensure a proper representation of the

feasible state space. On the other hand, straight roads does not allow

the framework to leverage the structure of the road graph to reduce the

longitudinal uncertainties resulting from the unavoidable accumulated

drift of the Visual Odometry (VO) systems (in this case, the LIBViso2

library). This effect, in combination with even a slight error of the VO,

may result in a wrong lock-on-road result. We assessed the localization

enhancements over our previous approach by counting the number of

hypotheses locked on each OpenStreetMap segment as the vehicle trav-

eled on the A-2 highway, measuring the number of required frames to

have the whole hypotheses set centered on the correct road segment.

we have a semantic gap in the lane number as the vehicle travels the

part of the road with an extra lane



5.4. Lane and Lines - Highway case study 123

(a) The Drivertive Vehicle used to collect the High-

way dataset

(b) Testing Site - A2 Highway. During the Road With

Layout Component evaluation, the vehicle turns onto

the exit ramp that run along the main highway.

Figure 5.30

(a) (b)

Figure 5.31: The figure depicts a typical Y-junction. Since the ramp follows the route of

main road, there is no chance for the OpenStreetMap component to distinguish between

the two clusters.

Discussion

As can be noticed in Figures 5.32 and 5.33, the first approach, relying

on the OpenStreetMap component only, tends to hold the localization on

the wrong road segment. This effect can be explained by the initial mis-

alignment of the hypotheses with respect to the direction of the junction.

For instance, let us consider the case depicted in Figure 5.34, just before

the vehicle turns onto the exit ramp. As can be seen in the image on the

left, the highway and the ramp share the highlighted node, resulting in a

different direction of the first part of the ramp. According to the equa-

tions shown in Section 3.2.2, it follows that the hypotheses aligned with

the main highway trunk will be better considered by our framework. On

the one hand, increasing the misalignment threshold of the OpenStreet-

Map Layout component could represent a quick trivial solution, which

delivers good results at the cost of worst localization performances with
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respect to the cartographic map. According to the OpenStreetMap doc-

umentation3, an alternative solution for the problem would be to use the

Open Ways, i.e., “a way describing a linear feature which does not share

a first and last node”, as depicted in Figure 5.34b. However the latter is

not a viable option, due to the de facto Shared Node solution commonly

used by OpenStreetMap community.

On the other hand, quantitative the results show that the compo-

nent proposed in this section allow the framework to quickly respond

to the lane change, once the straight lines are detected. In Figures 5.32e

and 5.32f we report two suboptimal result of the component. In the first

case, it should be notice that despite the hypotheses cover both the road

segments, the framework failed to lock on the right highway trunk. On

the other hand, the second graph shows the recovery from failures ability

introduced with the new layout component.

5.4.2 Road Lane Component

The road width components has proved to enhance the localization ac-

curacy as the vehicle is driven in close proximity to parallel roads, but

it do not introduce any enhancement towards the in-lane localization. In

this section we show the preliminary results achieved by leveraging the

module shortly presented in Section 3.4.3. Here we exploited the same

Alcalá dataset, considering the sequence shown in Figure 5.35, which is

composed of 513 frames and 4 lane transitions.

The goal of the proposed model is to estimate the vehicle’s ego-lane,

given the position of the detected road markings. The model is designed

to be robust enough to tolerate the noisy measurements resulting from

the basic line detector presented in Section 3.4.1. For this purpose, we

leveraged a Hidden Markov Model approach. From a technical perspec-

tive, the HMM model implements a filtering procedure over a single dis-

crete random variable. Here, the state space Xt is defined on the number

of possible states, in this case the number of available lanes, i.e., 3, repre-

senting the probability of being in one of the three lanes. These multiple

state variables are combined in a single “megavariable” whose tuples

are all possible tuples of values of the individual state variables, as de-

scribe in [186]. To perform the necessary predictions, a transition model

was empirically derived by evaluating the performances of the model.

The resulting transition matrix is shown in Table 5.8. The prediction is

3http://wiki.openstreetmap.org/wiki/Way

http://wiki.openstreetmap.org/wiki/Way
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(a) (b)

(c) (d)

(e) (f)

Figure 5.32: In this figure, we compare some of the results achieved using the proposed

Road Width Component (red graphs on the right) with respect to the original proposal

presented in Section 5.1 (blue graphs on the left). In both cases the vertical axis repre-

sents the number of hypotheses locked on the correct road segment. The total number

of hypotheses was set to 80. All the sequences end after 20 seconds from the start-

ing point, resulting in 200 width evaluations. The starting point was set as the vehicle

approaches the exit ramp, i.e., just before the Y-junction shown in Figure 5.34.

Table 5.8: Transition Matrix

0.63 0.279 0.001 0.0869 0.003 0.0001

0.139 0.63 0.139 0.003 0.086 0.003

0.001 0.279 0.63 0.0001 0.003 0.0869

0.1519 0.027 0.0001 0.567 0.253 0.001

0.023 0.054 0.023 0.208 0.484 0.208

0.0001 0.027 0.1519 0.001 0.253 0.567
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Figure 5.33: In the figure we show the starting point and the end point of the evaluation

phase shown in Figure 5.32. The average threshold represents the average point where

the proposed Layout Component correctly identified the correct road trunk.

(a) (b)

Figure 5.34: In the figure, a common Y-junction. This configuration may lead the

system to snap into the wrong highway trunk.
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(a) (b) (c) (d)

Figure 5.35: In the figure, the four lane transitions performed while capturing the

dataset.

evaluated according to the previous state multiplied by the transition ma-

trix. With regards to the measurement and the associated measurement

model, let us consider again the Figure 3.18. First, for each lane, we

create likelihood counter, for instance L1, L2, L3. Then, we estimate the

vehicle ego-lane by iterating the following considerations over all the

detected lines, i.e., valid and not valid:

• if the lane distance is compatible with the ego-lane, and the line has

the continuous flag, we add 1 to the L1 and L3 counters.

• if the lane distance is not compatible with the ego lane, we add 1

to the each counter which is in accordance with the measurement.

As an example, considering the highlighted line in Figure 5.36, we

add 1 to L2 and L3 counters, as the distance is in accordance with

both the lanes.

Regarding the probability values of the sensor model, we evaluate its

reliability by leveraging the line counter as introduced in Section 3.4.1.

The resulting L1, L2, L3 counters, i.e., our measure, along with the given

sensor reliability and the transition matrix, allows us to filter the Xt space

state representing the current ego-lane belief of our model. For a thor-

ough review of the Hidden Markov Models, we refer the reader to [186].

Discussion

This last component was designed to tackle the noisy measurements re-

sulting from INVETT line detector. The quantitative results of the algo-

rithm performances are summarized in Figure 5.37. On the one hand,

and not surprisingly, the results show that the line detector is unable to

correctly detect the number of lanes. As depicted in Figures 5.37b, 5.37e

and 5.37h, the detector results are extremely noisy, resulting in an unreli-

able ego-line detection. As instance, the detector is completely missing
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Figure 5.36: Considering the line indicated with the arrow, we can estimate that the

probability of being Lane{1|2|3} is {0,0.33,0.33}. This vector, represents the HMM

“megavariabile” Xt. This procedure is evaluated for all the lines in the detection.
Table 5.9: HMM vs Naive Detector Ego-Lane Estimate

Lane 1 Lane 2 Lane 3 Sum of Errors Fault Rate

Detector

Failures
91 216 25 364 0.70

HMM

Failures
37 75 76 188 0.36

Ground Truth

frames in lines
219 216 82

the transitions from Lane2 to Lane1, from Lane1 to Lane2 and from

Lane2 to Lane3. On the other hand, the filtering effect of the HMM

model is clearly shown in Figures 5.37a to 5.37i. Here the proposed

model correctly identified the lane transitions, and promising results are

summarized in Table 5.9. With respect to the experimental activity and

the results, it is clear that even with a slightly better line detector would

result in a great improvement.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 5.37: In the figure, the results from the evaluation of the Road Lane Component.

The first part of the figure shows the probabilities associated to each of the three lanes

shown in Figure 5.36. The first column represents the ground truth with respect to

the vehicle’s ego-lane (manually annotated). The second column outputs the ego lane

estimation as results from the detector, i.e., without the proposed HMM model, in a

per-frame basis. In the third column we show the results of the the proposed approach.

In second part of the figure, we show the most likely ego-lane value evaluated with and

without the proposed model. In both graphs the ground truth (Serie 1) is highlighted

in blue, while the estimated lane (Serie 2) is shown in orange. As can be noticed, the

results of the proposed model leads to more stable and accurate ego-lane estimates.
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5.5 Conclusion

In this chapter, we have presented the results of the four sensing pipelines

introduced within this thesis. Three out of four pipelines were actively

used within the Road Estimation framework proposed in Chapter 3, in-

troducing valuable performances in the context of both urban and high-

way vehicle localization. The main outcomes are:

• The first evaluation of the framework was performed with the map

matching module, which allows us to tackle in real-time a multi hy-

potheses localization problem by leveraging the open source LIB-

Viso2 visual odometry software and the OpenStreetMap service.

Relying on topometric maps as the only global information to per-

form vehicle driving localization may lead to indiscernible situa-

tions. On the other hand, our interpretation led to excellent results,

outperforming the state-of-the-art works in both accuracy perfor-

mances and quantitative assessment.

• After the analysis of the weak points of the map matching module,

to better handle the treacherous scenarios resulting from misalign-

ment and coarse road approximations frequently present in current

topometric maps, we present the results of our Building Detec-

tion pipeline, aimed at enhancing the initial rough road-level lo-

calization achieved with the first component. The results shown

enhancements in terms of both lateral and longitudinal localization

by smoothing the trajectories obtained by the original algorithm,

i.e., by leveraging the OpenStreetMap road network graph only.

• With respect to our on-line intersection detector, the evaluation ac-

tivity was focused on the testing of the classification engine. The

latter is composed of a twofold scheme that includes, on the one

hand, a per-pixel classification followed by a refinement phase by

means of a Conditional Random Field approach and on the other

hand a PCL-based purely geometric classification. Even though

the results from this pipeline were not integrated in the Road Lay-

out Estimation framework, we had the opportunity to stress the per-

formances with respect to state-of-the-art algorithms in the road in-

tersection field, achieving very good results despite the not always

reliable detection pipeline. This considerations allowed us to have

this work accepted as a contribution to the International Confer-

ence on Robotics and Automation - ICRA2017. More importantly,
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our method has a separate sensing pipeline, with respect to the in-

tersection topology classification. Unlike other more sophisticated

systems, which exploit a sequence of images up to when the vehicle

is inside the intersection to perform an off-line scene understand-

ing task, we developed an on-line template matching scheme that

relies on a versatile intersection model able to leverage the prior

information obtained from the OpenStreetMap service.

• Finally, we present the experimental activity resulting from two

specific road features aimed ad enhancing the localization in high-

way scenarios. The proposed approaches have been tested un-

der real traffic conditions, showing satisfactory performances with

respect to the map-matching-only settings and compensating the

noisy measures of our basic line detector.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

This thesis has presented a probabilistic framework aimed at estimating

the ego-vehicle localization in both urban and highway scenarios. We

tackled the problem proposing an on-line framework designed to handle

the localization uncertainties by means of component-wise interaction

with the OpenStreetMap mapping service. In this section we summarize

the main contributions of this thesis:

• The localization task is critical for every autonomous system and,

in the context of intelligent transportation systems, even a slightly

erroneous position estimate could have a strong impact on the sys-

tem safety. However, with respect to the standard robot localization

problem, the road vehicle localization has specific characteristics

that should be taken into account. Our claim is that standard topo-

logical maps could introduce remarkable added value for vehicle

localization. To deal with the critical nature of the autonomous

vehicles, we have proposed a probabilistic approach to match the

heterogeneous outcomes from sensing pipelines against the Open-

StreetMap. The main insights of the proposed approach is its on-

line strategy and its flexibility with respect to the number of input

sources. This work has been presented in the 18th International

Conference on Intelligent Transportation Systems 2015.

• We have presented a method aimed at lowering the accuracy lim-

itations that can arise in GNSS denied urban-like environments,

by means of a building’s façades detection pipeline. In addition
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to the road matching with data from the OpenStreetMap service,

building’s outlines help the framework to achieve in-lane localiza-

tion performance in urban areas. This work has been presented

in the 19th International Conference on Intelligent Transportation

Systems 2016.

• We have proposed an innovative module to on-line tackle the inter-

section modeling problem, which take into account 3D geometry

and visual clues as well as temporal integration between measure-

ments. This was our first step towards the semantic analysis of the

scene. To the best of our knowledge, our system has achieved state-

of-the-art performances with respect to similar on-line approaches,

classifying the road topology by means of dual classification, ge-

ometry and pixel-level.

• We have shown how the OpenStreetMap road properties like lane

numbers and road width, coupled with Hidden Markov Models and

a very basic line tracker, can be exploited to achieve a richer aware-

ness of the ego-vehicle position.

6.2 Future Works

This theses showed how the existing cartographic maps can be exploited

also by perception algorithms. There are several future directions that

should be considered. On the one hand, the Layout Components pre-

sented in this work have paved the way for further feature integrations.

Road signs, traffic lights, parking lots are just some examples of use-

ful features that can be leveraged for localization purposes. Also dy-

namic objects such as other vehicles or pedestrians would help our sys-

tem in the localization process. Another interesting direction will be

to update, validate or even integrate the features within the OpenStreet-

Map service. Furthermore, it should be considered that the latest works

leveraging Convolutional Neural Networks and Deep Learning recently

outperformed the state-of-the-art segmentation algorithms like the Con-

ditional Random Fields. Integrating this techniques together with the

proposed detection pipelines would result in a direct improvement. As a

final consideration, we want to stress how the next generation of upcom-

ing high-definition maps are going to change the current map-matching

capabilities. In Figure 6.1 we show an example of these maps.
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(a) (b)

(c)

Figure 6.1: An real example of the next generation high definition maps containing

both 3D laser scanner data and semantic annotations. Even if this are quite simple

scenarios in which the proposed framework
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