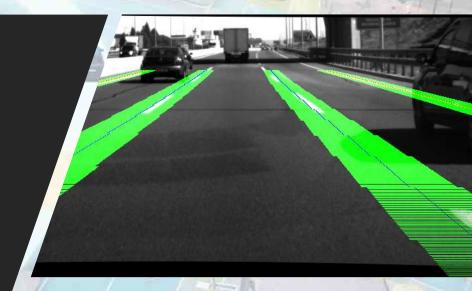


Ego-Lane Estimation by Modeling Lanes and Sensor Failures

HIGHWAY-LIKE SCENARIOS


A.L.Ballardini D.Cattaneo D.G.Sorrenti Università degli Studi di Milano - Bicocca, Italy R.Izquierdo, I.Parra, M.A. Sotelo University of Alcala, Alcalá de Henares, Spain

Tuesday, October 17th, 2017

Proposed Approach Overview

- <u>Given</u> a rough localization estimate (road segment)
- <u>Leverage</u> a line detector & tracker (we do not investigate this topic)
- <u>Exploit</u> a Hidden Markov Model with a *transient failure model*
- <u>Infer</u>: vehicle's ego-lane in a probabilistic fashion

From Road Lines to Road Lanes

In an ideal scenario, we could directly infer the vehicle ego-lane from the road lines

Possible issues

- Cluttering elements (other cars)
- Faded Road Markings
- Illumination Issues

Limit the uncertainties

Given partial line detections, we can exploit their distances (lateral offset wrt vehicle) to limit the ego-lane uncertainty

Only leftmost line detected due to illumination issues

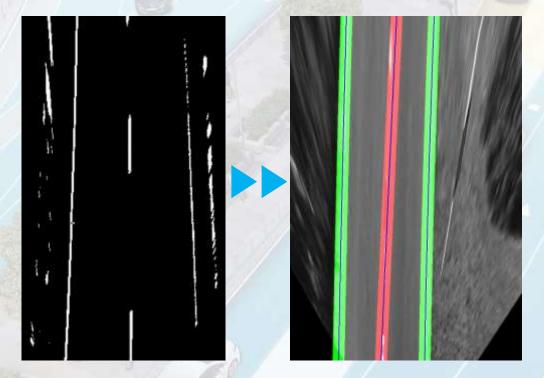
Lanes compatible w.r.t. line distance

01

Exploit consecutive yet partial observations over time

02

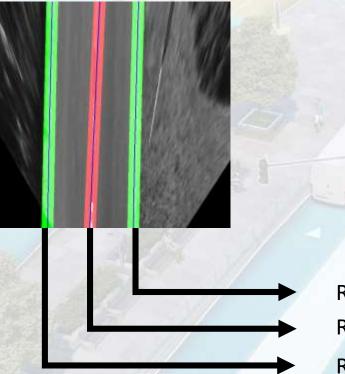
Exploit a HMM approach with 2*n-states* corresponding to the *n-lanes*

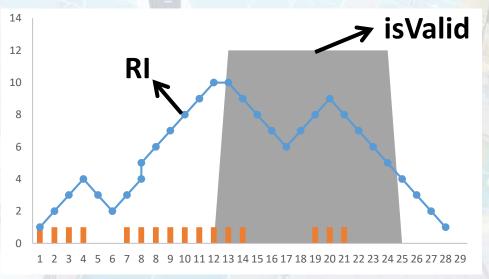

03

"n" is the number of lanes retrieved from OpenStreetMap

Track the Vehicle ego-lane

Line Detector & Tracker Interface

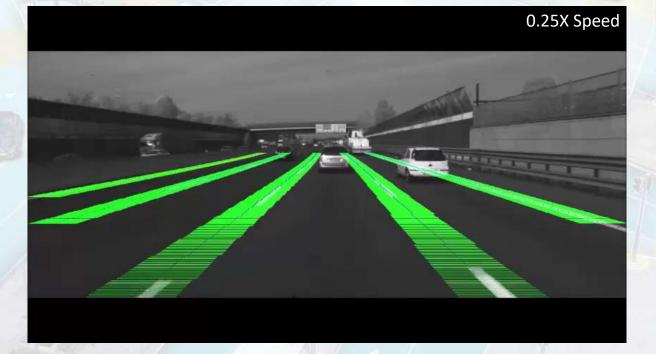

... }



- 1. Find Contours in image (BEV)
- 2. Fit Geometric Primitives on Contours (clothoids, polylines...)
- 3. Track Geometric Primitives
 - 1. lateral offset from vehicle [m]
 - 2. is line continuous? (y/n)

Temporal Line Reliability

Reliability Index line detection ratio over the last k-frames



Reliability Index of line1 8/10, isValid, continuous Reliability Index of line2 5/10 Reliability Index of line3 10/10, isValid

We add the Reliability Index and the isValid properties to the Line properties vector

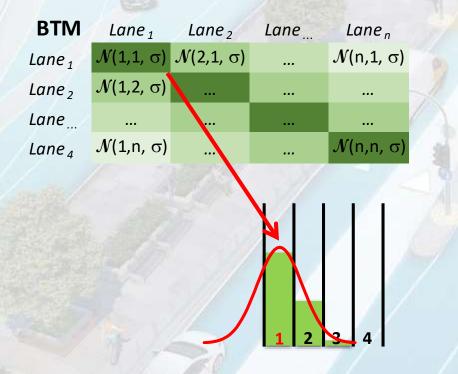
Sensor Output (Line Detector & Tracker + Line Reliability)

These results can be used to infer the ego-lane using the simple geometric considerations shown before

The HMM Model State Definition

HMM ($n, \sigma_1, \sigma_2, P_1, P_2, BV, w$)

n <u>number of lanes</u>, retrieved from OpenStreetMap
σ₁, σ₂ parameters used for the lane transition model generation
P₁, P₂ How likely to stay in SensorOK/SensorBad state (prediction phase)
BV Bonus Value for continuous lines (gives richer information)
w Inertia used in the Sensor Matrix to propagate the SensorBad state

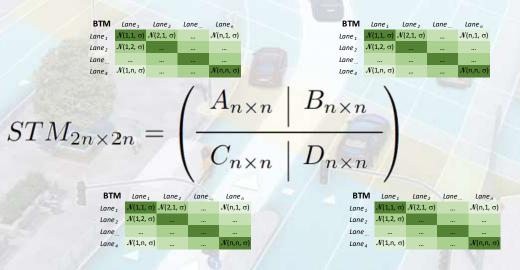

The HMM allow us to represent and track over time the probability of being on each lane and having either a *properly operating* or a *faulty* Sensor

X_t = <Lane₁SensorOK ... Lane_nSensorOK , Lane₁SensorBad... Lane_nSensorBad > |X_t | = |Sensor| * |ego_lane|¹²

The HMM Tracking Model State Prediction

X_t = <Lane_{1...n} SensorOK ; Lane_{1...n} SensorBad>

$X_{t \perp 1} = X_t \cdot StateTransitionMatrix$



The State Transition Matrix is built using a Basic Transition Matrix, which in turn is based on the following consideration:

the probability of moving to another lane is normally distributed, the average is on the current lane, σ is a model parameter

The HMM Tracking Model State Prediction

$\overline{X_{t+1}} = X_t \cdot StateTransitionMatrix$

) * P₁

) * $(1-P_1)$

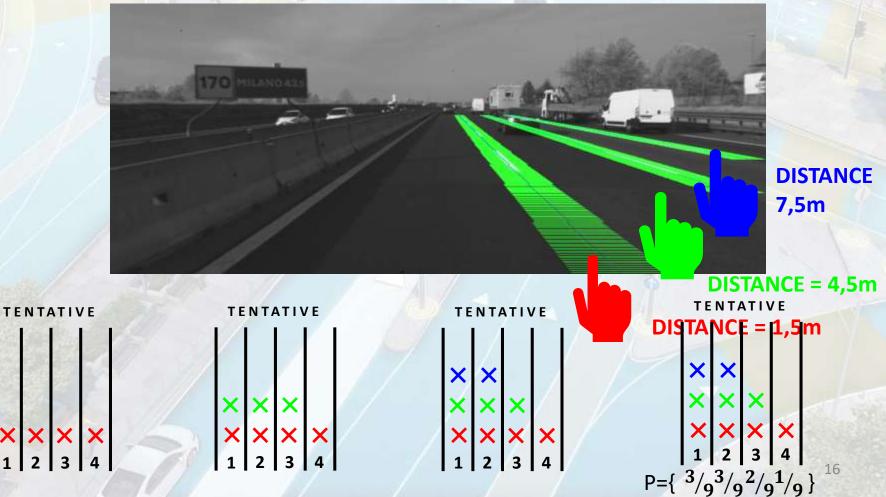
) * $(1-P_2)$

- $A \rightarrow$ (Lane Transition from SensorOK to SensorOK
- $B \rightarrow$ (Lane Transition from SensorOK to SensorBad
- C → (Lane Transition from SensorBad to SensorOk
- D \rightarrow (Lane Transition from SensorBad to SensorBad) * P₂ 14

The HMM Tracking Model State Prediction

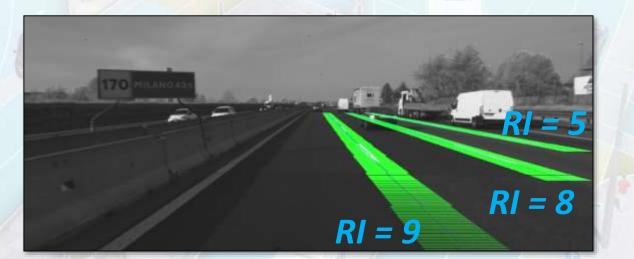
 $\overline{X_{t+1}} = X_t \cdot StateTransitionMatrix$

- A \rightarrow (Lane Transition from SensorOK to SensorOK) * P₁
- B → (Lane Transition from SensorOK to SensorBad
- C \rightarrow (Lane Transition from SensorBad to SensorOk) * (1-P₂)
- D \rightarrow (Lane Transition from SensorBad to SensorBad) * P₂


Idea:

the sensor mainly gives long runs of correct outputs, so P_1 is "large" (and $(1-P_1)$ is "small") when the sensor makes mistakes for a short period of time, so $(1-P_2)$ is "large" (and P_2 is "small")

) * (1-P₁)


Updating the Belief 1 *Counting Scheme*

To update the belief exploiting the output of the Line Detector & Tracker we use an ad-hoc sensor model which uses the Line Properties (LateralOffset; ReliabilityIndex; isValid; Continuous)

Updating the Belief 2 *Exploiting the Sensor Reliability*

To update the belief exploiting the output of the Line Detector & Tracker we use an ad-hoc sensor model which uses the Line Properties (Lateral Offset ;Reliability Index ; isContinuous)

 $SensorScoreOK = \frac{\sum_{1}^{m} isValid_{i} * RI_{i}}{10 * (n+1)} = \frac{9 + 8 + 5}{50} = 0.44$

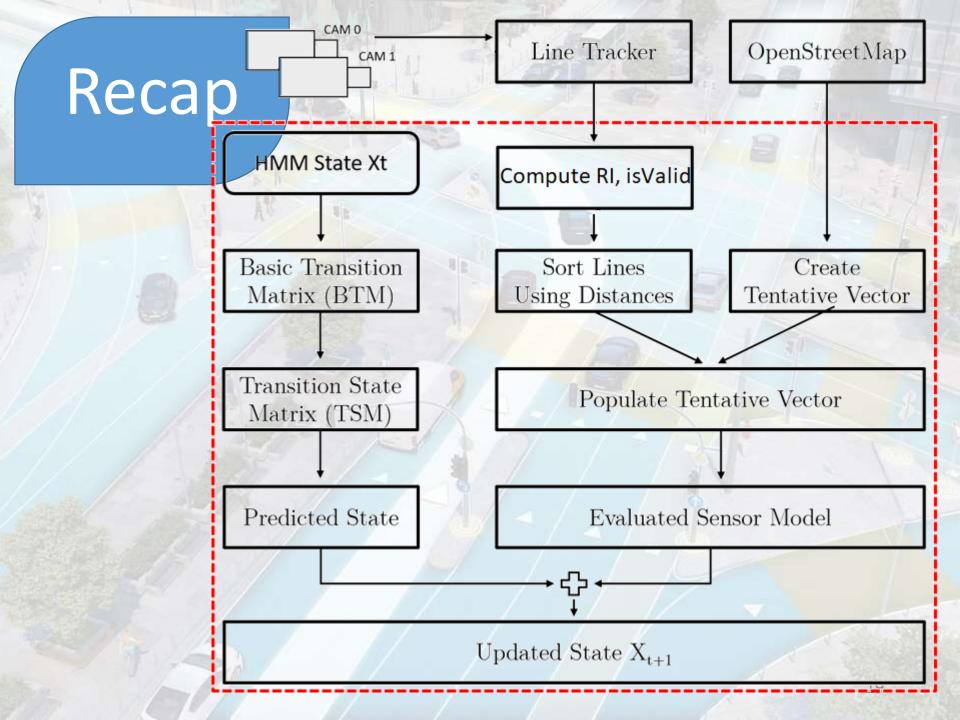
SensorScoreBad = 1 - 0.44 = 0.66

The normalizer equals the maximum number than RI can take times the maximum number of lines 1/

Updating the Belief 3

To correctly deal with either a *properly operating* or *faulty* sensor the HMM model includes different strategies for the two cases

> Sensor Reliability


Counting Scheme

 $S_1 = SensorScoreOK \cdot tentative$

 $S_2 = SensorScoreBad \cdot [(tentative \cdot w) + \overline{X_{t+1}} \cdot (1-w)]$

 $\mathsf{Z} = (S_1 \mid S_2)$

Experimental Configuration

We verified the improvements of our model using two datasets recorded in real driving conditions.

Differently from KITTI datasets here we have hundreds of lane transitions

A4 Highway, Milan-Bergamo, Italy 4-Lanes Configuration

Detector Only

58%

42%

A2 Highway, Alcalá de Henares, Spain 3-Lanes Configuration Detector Only Our Model

Wrong Lane Estimate

Our Model

77%

23%

Correct Lane Estimate

76%

92%

Results 1

Detected Ego Lane Dispersion

	Detectory Only	Our Model
Correct Lane	5276	6978
Offset 1	3744	2762
Offset 2	779	212
Offset 3	153	0

Line Detector Only

Proposed Model

	1	2	3	4	Support	Recall		1	2	3	4	Support	Recall
GT Lane 1	2230	320	21	3	2574	0.866	GT Lane 1	2080	432	62	0	2574	0.808
GT Lane 2	904	2005	275	16	3200	0.627	GT Lane 2	246	2477	476	1	3200	0.774
GT Lane 3	373	1666	927	5	2971	0.312	GT Lane 3	13	871	2082	5	2971	0.701
GT Lane 4	150	369	574	114	1207	0.094	GT Lane 4	0	136	732	339	1207	0.281
Total	3657	4360	1797	138			Total	2339	3916	3352	345		
Precision	0.61	0.46	0.516	0.826			Precision	0.889	0.633	0.621	0.983		
F1 Score	0.7158	0.53	0.389	0.17			F1 Score	0.847	0.696	0.659	0.437		

Support-Column: how many GT lanes. Total-Row: how many ego-vehicle detections over the *n*-lane.

Results 2

 \rightarrow

Ground Truth

Line Detector & Tracker Only \rightarrow

Proposed Model

Thank you

Dataset will be available for download at <u>http://www.ira.disco.unimib.it/ego-</u> <u>lane-estimation-by-modeling-</u> <u>lanesand-sensor-failures</u>

or just scan qr code

Updated Version of the Paper also on our website soon

23

Results 2

