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HIGHWAY-LIKE SCENARIOS



Proposed Approach Overview

•Given a rough localization
estimate (road segment)

• Leverage a line detector & 
tracker (we do not investigate 
this topic)

•Exploit a Hidden Markov
Model with a 
transient failure model

• Infer: vehicle’s ego-lane in a 
probabilistic fashion
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From Road Lines
to Road Lanes

In an ideal scenario, we could 
directly infer the vehicle ego-lane 

from the road lines
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Possible issues 

• Cluttering elements (other cars)

• Faded Road Markings

• Illumination Issues



Limit the uncertainties

Given partial line detections, we can exploit their 
distances (lateral offset wrt vehicle) to limit the 

ego-lane uncertainty
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Only leftmost line detected due to 
illumination issues

Lanes compatible w.r.t. line distance



Track the Vehicle ego-lane

Exploit 
consecutive yet 

partial 
observations over 

time

01
Exploit a HMM 
approach with 

2n-states
corresponding
to the n-lanes
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“n” is the number 
of lanes retrieved 

from 
OpenStreetMap
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Line Detector & Tracker Interface
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1. Find Contours in image (BEV) 

2. Fit Geometric Primitives on 
Contours (clothoids, polylines…)

3. Track Geometric Primitives

1. lateral offset from vehicle [m]

2. is line continuous? (y/n)

output = { line 1 , <property1…k >
line 2 , <property1…k >
… }



Temporal Line Reliability
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Reliability Index of line1   8/10, isValid, continuous

Reliability Index of line2   5/10

Reliability Index of line3 10/10, isValid

Reliability Index 
line detection ratio over the last k-frames
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We add the Reliability Index and the isValid properties to the Line properties vector

isValid
RI



Sensor Output
(Line Detector & Tracker + Line Reliability)
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These results can  be used to infer the ego-lane using the 
simple geometric considerations shown before

0.25X Speed



The HMM Model
State Definition

HMM ( n, 1, 2, P1, P2, BV, w )
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The HMM allow us to represent and track over time the probability of 
being on each lane and having either a properly operating or a faulty

Sensor

Xt = <Lane1SensorOK … LanenSensorOK , Lane1SensorBad… LanenSensorBad >

• n number of lanes, retrieved from OpenStreetMap
•  1, 2 parameters used for the lane transition model generation
• P1,P2 How likely to stay in SensorOK/SensorBad state (prediction phase)
• BV Bonus Value for continuous lines (gives richer information)
• w Inertia used in the Sensor Matrix to propagate the SensorBad state

|Xt |= |Sensor| * |ego_lane| 
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𝑿𝒕 = <Lane1…n SensorOK ; Lane1…n SensorBad>

𝑿𝒕 + 𝟏 = 𝑿𝒕 ∙ 𝑺𝒕𝒂𝒕𝒆𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝑴𝒂𝒕𝒓𝒊𝒙

The HMM Tracking Model
State Prediction

BTM Lane 1 Lane 2 Lane ... Lane n

Lane 1
N(1,1, ) N(2,1, ) … N(n,1, )

Lane 2
N(1,2, ) … … …

Lane ... … … … …

Lane 4
N(1,n, ) … … N(n,n, )

1 2 3 4

The State Transition Matrix is
built using a Basic Transition
Matrix, which in turn is based
on the following consideration:

the probability of moving to
another lane is normally
distributed, the average is on
the current lane,  is a model
parameter
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𝑿𝒕 + 𝟏 = 𝑿𝒕 ∙ 𝑺𝒕𝒂𝒕𝒆𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝑴𝒂𝒕𝒓𝒊𝒙

• A  (Lane Transition from SensorOK to SensorOK ) * P1

• B  (Lane Transition from SensorOK to SensorBad ) * (1-P1)
• C  (Lane Transition from SensorBad to SensorOk ) * (1-P2)
• D  (Lane Transition from SensorBad to SensorBad ) * P2

The HMM Tracking Model
State Prediction

BTM Lane 1 Lane 2 Lane ... Lane n

Lane 1
N(1,1, ) N(2,1, ) … N(n,1, )

Lane 2
N(1,2, ) … … …

Lane ... … … … …

Lane 4
N(1,n, ) … … N(n,n, )

BTM Lane 1 Lane 2 Lane ... Lane n

Lane 1
N(1,1, ) N(2,1, ) … N(n,1, )

Lane 2
N(1,2, ) … … …

Lane ... … … … …

Lane 4
N(1,n, ) … … N(n,n, )

BTM Lane 1 Lane 2 Lane ... Lane n

Lane 1
N(1,1, ) N(2,1, ) … N(n,1, )

Lane 2
N(1,2, ) … … …

Lane ... … … … …

Lane 4
N(1,n, ) … … N(n,n, )

BTM Lane 1 Lane 2 Lane ... Lane n

Lane 1
N(1,1, ) N(2,1, ) … N(n,1, )

Lane 2
N(1,2, ) … … …

Lane ... … … … …

Lane 4
N(1,n, ) … … N(n,n, )
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𝑿𝒕 + 𝟏 = 𝑿𝒕 ∙ 𝑺𝒕𝒂𝒕𝒆𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝑴𝒂𝒕𝒓𝒊𝒙

• A  (Lane Transition from SensorOK to SensorOK ) * P1

• B  (Lane Transition from SensorOK to SensorBad ) * (1-P1)
• C  (Lane Transition from SensorBad to SensorOk ) * (1-P2)
• D  (Lane Transition from SensorBad to SensorBad ) * P2

The HMM Tracking Model
State Prediction

Idea: 
the sensor mainly gives long runs of correct outputs, so P1

is “large” (and (1-P1) is “small”)
when the sensor makes mistakes for a short period of 
time, so (1-P2) is “large” (and P2 is “small”) 



Updating the Belief 1
Counting Scheme

To update the belief exploiting the output of the Line Detector & Tracker 
we use an ad-hoc sensor model  which uses the Line Properties

(LateralOffset; ReliabilityIndex; isValid; Continuous)

161 2 3 4

T E N T A T I V E
DISTANCE = 1,5m

DISTANCE = 4,5m

1 2 3 4

T E N T A T I V E

DISTANCE 
7,5m

1 2 3 4

T E N T A T I V E

ൗ𝟑 𝟗 ൗ𝟐 𝟗

T E N T A T I V E

ൗ𝟑 𝟗 ൗ𝟏 𝟗P={                        }
1 2 3 4



Updating the Belief 2
Exploiting the Sensor Reliability
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RI = 9
RI = 8

RI = 5

𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑐𝑜𝑟𝑒𝑂𝐾 =
σ1
𝑚 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝑖 ∗ 𝑅𝐼𝑖
10 ∗ (𝑛 + 1)

=
9 + 8 + 5

50
= 0.44

𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑐𝑜𝑟𝑒𝐵𝑎𝑑 = 1 − 0.44 = 0.66

To update the belief exploiting the output of the Line Detector & Tracker 
we use an ad-hoc sensor model  which uses the Line Properties

(Lateral Offset ;Reliability Index ; isContinuous)

The normalizer equals the maximum number than RI can take times the maximum number of lines



Updating the Belief 3
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𝑆1 = 𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑐𝑜𝑟𝑒𝑂𝐾 ∙ 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒

𝑆2 = 𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑐𝑜𝑟𝑒𝐵𝑎𝑑 ∙ 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 ∙ 𝑤 + 𝑿𝒕 + 𝟏 ∙ 1 − 𝑤

Z = (𝑆1| 𝑆2) 

To correctly deal with either a properly operating or faulty sensor 
the HMM model includes different strategies for the two cases

Sensor
Reliability

Counting Scheme



Recap
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Experimental Configuration

We verified the improvements of our model using two datasets recorded in 
real driving conditions. 

Differently from KITTI datasets here we have hundreds of lane transitions
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A4 Highway, Milan-Bergamo, Italy
4-Lanes Configuration

A2 Highway, Alcalá de Henares, Spain
3-Lanes Configuration

Detector Only Detector OnlyOur Model Our Model

Wrong Lane Estimate Correct Lane Estimate



Results 1
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Detected 
Ego Lane 

Dispersion

Proposed ModelLine Detector Only

Support-Column: how many GT lanes. Total-Row: how many ego-vehicle detections over the n-
lane. 



Results 2

Ground Truth 

Proposed Model 

Line Detector & Tracker Only 



Thank you

Dataset will be available for 
download at

http://www.ira.disco.unimib.it/ego-
lane-estimation-by-modeling-

lanesand-sensor-failures

or just scan qr code

Updated Version of the Paper also 
on our website soon

http://www.ira.disco.unimib.it/ego-lane-estimation-by-modeling-lanesand-sensor-failures


Results 2


