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Abstract

Many works have been presented for indoor scene understanding, yet few of them
combine structural reasoning with full motion estimation in a real-time oriented ap-
proach. In this work we address the problem of estimating the3D structural layout
of complex and cluttered indoor scenes from monocular videosequences, where the ob-
server can freely move in the surrounding space. We propose an effective probabilistic
formulation that allows us to generate, evaluate and optimize layout hypotheses by inte-
grating new image evidence as the observer moves. Compared to state-of-the-art work,
our approach makes significantly less limiting hypotheses about the scene and the ob-
server (e.g., Manhattan world assumption, known camera motion). We introduce a new
challenging dataset and present an extensive experimentalevaluation, which demon-
strates that our formulation reaches near-real-time computation time and outperforms
state-of-the-art methods while operating in significantlyless constrained conditions.

1 Introduction
The indoor scene reconstruction problem has sparked livelyinterest in the research commu-
nity in the past few years. The ability to understand the structural geometry of living spaces
allows, for example, autonomous robots to safely move in thesurrounding environment, as
well as the development of augmented reality applications.Many contributions have been
proposed to either address the problem of recognizing semantically meaningful components,
such as floor or walls in 2D images, or the problem of generating sparse 3D point-cloud
maps of the observed scene while moving within it. By contrast, few works have addressed
the problem of reconstructing semantically consistent indoor structures (also referred to as
3D scene layout, see Figure1), and refining layout hypotheses by integrating new evidence
acquired as the observer moves around. Among those that do, simplifications are made to
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Figure 1:3D scene layout estimation process. The video sequence is first processed to obtain camera
localization and sparse 3D point cloud reconstruction. Layout components (e.g. floor, ceiling, walls)
are generated from the sparse 3D points and combined to generate layout hypotheses (see Section2).
Each layout hypothesis is evaluated and optimized by incorporating new image evidence. The final 3D
scene layout is represented by the hypothesis that better describes the scene (see Section3).

solve the problem, such as the Manhattan world assumption, partially or fully known ob-
server motion, and occasionally human intervention for a correct initialization.

In this paper we pursue a semantically consistent reconstruction of the structural ele-
ments in indoor scenes, excluding any a priori knowledge of the observer’s motion, human
intervention, or hard Manhattan constraints. We start by observing in our experiments that
state-of-the-art 3D reconstruction techniques, such as SLAM and SfM, are far from achiev-
ing reliable results that can be directly translated to a higher semantic reconstruction. This
phenomenon is particularly noticeable when the observed scenes are highly cluttered and/or
mostly featureless. We therefore propose a probabilistic framework, to be fed with such
noisy elaborations, that allows us to efficiently integratenew evidence to generate, evaluate
and refine 3D layout hypotheses as the observer moves throughthe scene. Different types of
information extracted from images (points, lines, regions) and, potentially, from other kind
of sensors, can be easily merged into our probabilistic formulation, allowing us to cope with
both clutter and featureless surfaces.

We present extensive experimental results on challenging sequences, demonstrating im-
provement over state-of-the-art approaches while operating in significantly less constraining
conditions and in near-real-time (in the order of∼20fps). We propose a new challenging
dataset to prove the full capacities of the proposed method and which is available for future
comparisons [1].

1.1 Related work
Sparse 3D reconstruction. While the objective of this work is 3D indoor scene layout
understanding, our approach hinges on the success of sparsereconstruction methods, such
as structure from motion (SfM), simultaneous localizationand mapping (SLAM), or parallel
tracking and mapping (PTAM). SfM methods usually process sparse set of images from
which partial geometry is recovered and use optimization methods (e.g., bundle adjustment)



A. FURLAN et al.: FREE YOUR CAMERA 3

to obtain reconstructions that are globally consistent [13, 32, 35]. They are often used to
model large scale environments such as cities [4, 22, 28] and are capable of fusing data
from different types of sensors like mono/stereo cameras, IMU and GPS. SLAM methods
are primarily based on Bayesian filtering [5, 6, 20, 21, 29]. A key feature of all SLAM
approaches is to update the filter status with new evidence extracted from each image in
the sequence. An alternative strategy is taken by approaches such as PTAM [17] which,
instead, rely on optimizing a smaller number of key-frames using bundle adjustment. [12]
move toward a higher level representation by introducing lines and planes into a standard
EKF SLAM system, which allows them to collapse the EKF state space. Most of these
reconstruction methods, however, just recover the environment as a collection of sparse 3D
points, lines or planes, without being able to identify the important semantic phenomena in
the scene.

Single image. Many works have been recently proposed to solve the problem of indoor
scene layout estimation from single images. Most of these methods leverage machine learn-
ing techniques for solving the inherent ambiguity of the 3D-to-2D mapping [2, 14, 15, 16,
18, 24, 25, 27]. The advantage of these techniques is that they reconstruct the scene as a col-
lection of semantically meaningful components such as floors, walls or doors and identify
those in 2D images. Reasoning about vanishing points or lines of the scene is often used to
help segment regions of interest. These methods, however, mostly focus on obtaining a 2D
or, often, a 2.5D layout estimation of the scene (i.e. identify walls and floors in the image)
and fail to achieve an accurate metric 3D estimation of the geometrical properties of the en-
vironment as we seek to do. Moreover, none of these achieve real-time performances, except
for [25].

Multiple images/sensors. A number of works have looked at inferring the scene layout
from multiple images. Sinhaet al. [27] proposed a multi-view stereo method to generate
piecewise planar depth maps from sparse images. This approach assumes that strong line
elements can be extracted from images. Flintet al. [7, 8, 9] present a model that leverages
the Manhattan world assumption to estimate dominant vanishing points and relates them with
learned photometric cues. Similarly, Furukawaet al. [10, 11] rely on Manhattan assumption,
but model the reconstruction problem as an MRF. Xiaoet al. [36] propose a method (Inverse
CSG) based on dense 3D laser scans and imagery to obtain photo-realistic reconstructions
of museums.

Real-time. All of the approaches to semantic layout estimation performwell below real-
time speeds and either rely on slow robust SfM camera pose estimation and/or on scene-
dependent learning. Tsaiet al. [33, 34] focus on real-time indoor scene estimation tasks
for mobile robot applications. They exploit video sequences to validate and support layout
hypotheses and drop the Manhattan world assumption. However, they tackle a simplified
problem, where the observer is a robotic agent with either known roto-translation between
camera and floor plane [34] or known full pose of the robot at each time step [33]. Fur-
thermore, they generate layout hypotheses by projecting floor-wall intersection boundaries
(observed in the images) onto the known ground plane, which means that if those lines are
not observed, the entire layout hypothesis will not be generated.

1.2 Contributions
In this paper we propose an efficient method for estimating 3Dindoor layout from an ar-
bitrary 6DoF moving monocular observer, whose motion is estimated usingstate-of-the-art
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(a) (b) (c)

Figure 2:Left: a noisy sparse 3D reconstruction. Center: a large number of candidate layout com-
ponents obtained with plane fitting. Right: The process of generating layout hypotheses as random
combinations of candidate layout components.

techniques such as SLAM and key-framed SfM. Our method builds upon prior work in the
following ways:

• Eliminating the hard Manhattan world assumption.
• Requiring noa priori knowledge of the observer motion with respect to the scene.
• Operating at near-real-time speeds (∼20fps).
• Introducing a new challenging dataset which features cluttered, non-Manhattan and

non-box-shaped scenes.

2 Method Overview
In this section we describe the framework within which layout hypotheses are generated,
evaluated and updated or rejected. Figure1 shows a pictorial representation and a schematic
diagram of the whole process.

Sparse 3D reconstruction. As the observer moves in the surrounding environment and
the image stream is acquired, we first pre-process sequenceswith a localization and sparse
3D reconstruction algorithm. Since our main contribution is not related to this problem, we
designed our framework to be able to work with any algorithm that can provide a camera
motion estimation and a cloud of 3D points. In our experiments we compare two such ap-
proaches: a real-time implementation of the Monocular V-SLAM approach proposed in [23]
and the non-real-time VisualSfM [35]. Notice that these 3D reconstructions are in general
noisy and sparse (Figure2(a)).

Hypotheses initialization. The second step consists of generating a higher level represen-
tation of the 3D points estimated in the pre-processing phase. Several types of geometrical
primitives are suitable for this purpose. In our case, we believe a piecewise planar repre-
sentation is the most appropriate for indoor scene representation. We fit a large number of
planes to the 3D points so as to generate a large number of (potentially inaccurate) candi-
dates of layout components, i.e. walls, floor, ceiling (Figure 2(b)). In our experiments we
implemented an iterative RanSaC plane fitting procedure, which we optimized for indoor
scenes by allowing peripheral fitted points to be re-injected in the iteration process, since
these points potentially lay on the intersection of two planes.

Layout estimation. In the last step, which constitutes the core of our proposed inference
engine, we generate layout hypotheses as random combinations of candidate layout compo-
nents (Figure2(c)). Each layout hypothesis is evaluated at each time frame by measuring
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Figure 3: From left to right, an example of indoor scene and of the evolution in time of particles
throughout the optimization process. Note how the unlikelylayout hypotheses disappear while the
most plausible ones survive and get refined.

its compatibility with observations (e.g. image points and lines) and geometrical constraints
across frames. During this process, each layout is “perturbed” by locally adjusting, opti-
mizing, merging or splitting layout components. There are different approaches to manage
sets of hypotheses. In this paper we choose to integrate our probabilistic framework within
a particle filter structure. This choice allows us to explicitly formulate the problem in a
parallel-computing oriented fashion (particles are independent from each other), which can
lead to high efficiency gains in computation time. The outputof the optimization procedure
is an estimation of the 3D scene layout, which is obtained by selecting the layout hypothesis
with the best set of layout components (see Section3).

Advantages. There are two important advantages stemming from the choices mentioned
above: i) the local optimization step applied to each layoutcomponent helps recover from
noisy initialization (transition from Figure3(b) to Figure3(c)) while keeping the computa-
tion amount affordable for real-time applications. This could not be achieved with standard
“brute force hypothesize and test“ approaches,e.g. [18, 19]; ii) the choice of embedding
our probabilistic formulation within a particle filter alsoallows us to e exploit some critical
properties of particle filters, like multi-modal posteriorrepresentation, re-sampling, particle
clustering and, most importantly, recover from substantially wrong

initializations (transition from Figure3(c) to Figure3(d)).

3 Probabilistic Layout Estimation
As stated above, the input to our inference engine is an imagesequence from which the
camera motion and sparse 3D points are estimated. These 3D points are used to generate
layout components (walls, floor, ceiling) by fitting a large number of planes through such
points (see Section2). The output of the inference engine is the layout hypothesis that better
explains the scene in terms of compatibility with observations and geometrical constraints.
At the heart of our approach is a particle filter-based optimization [30] that is capable of
processing candidate layout components so as to obtain plausible scene layouts, where the
layout hypotheses represent the particles of the filter. As with any optimization strategy, this
requires four key components: a principled choice of the layout parameterization (3.1); an
initialization strategy (3.2) to generate the initial layout hypotheses; a method for exploring
the state space (3.3); a score function (3.4) to evaluate the quality of layout hypotheses. In
the following section, we will discuss each of these aspectsin details.

3.1 Layout Parametrization
While much prior work has leveraged the Manhattan world assumption, we believe this is
a limiting hypothesis. To overcome this limitation, in thispaper we adopt a representation
similar to [33, 34] (sometimes referred to as Soft Manhattan), which makes thefollowing
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assumptions about the environment: i) ground plane and ceiling are parallel; ii) walls are
only constrained to be orthogonal to the ground plane (and ceiling); iii) there can be any
number of walls and each wall can be displaced at any angle with respect to other walls.
Thus a room layout is fully parametrized by its gravity vector, the heights of its ground
and ceiling, and a set of walls with only one degree of freedomfor rotation and one for
translation.

3.2 Initializing Layout Hypotheses
A layout hypothesis is generated as follows. We first determine the rough direction of grav-
ity as given by an IMU or, if none is present, by assuming that the camera optical axis is
roughly horizontal when the sequence begins. The height of the ground and ceiling are then
approximated by the lowest and highest features tracked by SLAM/SfM along this direction.
If they are not observed at initialization time, their heights will be underestimated at first and
adjusted as more parts of the scene are observed. Subsequently, sampling from the initial set
of planes fitted to the 3D points obtained from the SLAM/SfM reconstruction (Section2),
each layout hypothesis is assigned a random number of candidate walls (Figure2(c)). While
being assigned to the layout hypothesis, each wall is transformed by finding the minimal
transformation needed to make it orthogonal to the ground.

3.3 Exploring the State Space
The above step gives a very rough estimate of the scene layout. In order to refine this esti-
mate, we propose to “perturb” the layout components assigned to the layout hypothesis. This
can be done within the hypothesis itself or by generating a set of new hypotheses. Given a
layout hypothesis at time t-1, we may “perturb” it or generate a new hypothesis by:

• Rotating the ground plane about a random direction by some angleθg

• Translating the ground or ceiling by some distance,dg or dc

• Rotating walli about the gravity vector byθ i
w and optimizing its reprojection error

• Translating walli by some distancedi
w and optimizing its reprojection error

• Removing a wall which is currently hypothesized
• Adding a wall which had been removed
• Taking no action

whereθg, dg, dc, θ i
w, anddi

w are normally distributed. For each particle in the filter, only
a single action may be performed per time step, as determinedby a weighted coin flip.

3.4 Scoring Hypotheses
At each timestept, we wish to assign a probability to a particular hypothesis,taking into
account new observations and geometrical constraints:

Pt = ∏
i

Pi
f Pi

o(θi)P
i
r(e

i
r)∏

j
Pi j

m (φi j)P
i j
s (d−1

i j )pi j (Pi j
w )ai j (1)

where the binary termspi j andai j are initially zero. pi j is set to 1 if wallsi and j are
near-parallel by some angular threshold andai j is set to 1 if they are adjacent. We have
designed this probability to enforce a number of desirable properties.

Fitness: The initial pre-processing yields planes with varying goodness of fit. Thus, to
each visible wall, we assign a corresponding fitness termPi

f , represented by a zero-mean
Gaussian over the residual least-square error after the plane fitting process.

Orthogonality to Ground: In Section3.2 we described a method for generating orthog-
onal wall candidates from non-orthogonal planes. The more these planes are altered, the
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less they are supported by data. We capture this with a zero-mean GaussianPi
o(θ ), whereθ

denotes the amount of rotation required to orthogonalize the wall to the ground.
Low Reprojection Error: Many feature points tend to fall on the ground, ceiling, or walls

of a scene. To make use of these visual cues, we track featuresusing the Kanade-Lucas-
Tomasi method [31]. To be robust to outliers, we discard those matches which i)could
not have come from a plausible camera motion, or ii) don’t share a homography with a
minimum number of other points in the scene. At timet, we project the keypoints att −1
onto all possible walls, and evaluate their hinge-loss 2D reprojection error. Each point is then
assigned to the wall which minimizes its reprojection error, and the averageer is computed.
For each wall we assign a probabilityPi

r(er), which is normally distributed about 0 pixels.
Manhattan Layout: While we do not leverage the Manhattan assumption to generate lay-

out hypotheses, we recognize that angles are far more likelyto fall in 90◦ or 45◦ increments
than, e.g., 87◦. To capture this, for each pair of visible walls we include a termPi j

m (φ), where
φ is their relative angle modulo 90◦ (or 45◦) andPi j

m is a zero-mean Gaussian.
Simplicity: Adding more walls will always improve reprojection error.Actual layouts,

however, are fairly simple: they are far more likely to contain one large wall than many
small ones. To enforce this, for two near-parallel walls we assign a probabilityPi j

s (d−1)
which captures how redundant walli is given the presence of wallj, d meters away. This is
normally distributed about1d = 0, ord → ∞.

Wall-wall intersection: Small errors in the estimation of wall rotations can not be reliably
captured by the reprojection error term. Yet, such small errors can lead to substantial errors in
the displacement of the intersection between two walls. We exploit this intuition by assigning
a probabilityPi j

w that weights the image evidence supporting an intersectionbetween walls
i and j. To obtain this evidence, the 3D line segment resulting fromthe intersection is
projected into the image and there compared against 2D line segments extracted with a Canny
edge detector [3].

The final output of the optimization procedure is an estimation of the 3D scene layout,
obtained by selecting the layout hypothesis which best describes the scene in terms of the
score function in Eq.1.

4 Results
In this section we show experimental results of our method when tested on the state-of-the-art
dataset [34], as well as on a new challenging dataset that we introduce inthis paper and that
is available for future comparison [1]. To the best of our knowledge, the dataset [34] is the
only state-of-the-art dataset that can be used for comparison for this type of problem. Since
our method requires video sequences as inputs, some datasets cannot be used for evaluation
because they feature single images [14], non-video (i.e. sparse) images [10, 11] or they are
no longer available [7, 9].

4.1 Experimental setup
We first run two sparse 3D reconstruction techniques, RT-SLAM [23] and VisualSfM [35],
and feed the generated 3D point clouds and camera pose estimations to our algorithm, which
outputs the final 3D layout reconstruction. Final reconstruction results are compared to:

• State-of-the-art approaches: the video-based approach proposed in [34] and two
well known single image methods, [16] and [14] (Section1.1). For completeness, in
Table1 we report the results of [16] composed with a MRF over image frames. Please
refer to [34] for a comprehensive description of this composition.
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Method Excl. ceil Incl. ceil
[34] 90.58 82.17
[16] 82.62 83.30
[16]+MRF 81.44 82.13
[14] 84.70 84.33
Our + VSLAM 86.92 87.01

Table 1: Classification accuracy on the Michi-
gan Indoor Corridor Video Dataset. Our results
are compared to the results obtained with [34],
[16] and [14].

Method Clas. acc. Avg. fps
Baseline 70.64 —
[16] 59.29 0.17
[14] 73.59 0.03
Our + VSLAM 86.24 21.63
Our + VSfM 75.94 16.90

Table 2:Classification accuracy on the proposed
dataset. Our results (with SLAM and SfM) are
compared to the results obtained with a naive
baseline method, [16] and [14].

• Baseline method: in order to show the importance of the evaluation and optimization
process (Section3), we built a baseline method consisting in projecting all the possible
combination of layout components (i.e. fitted planes, see Section2) into the image and
picking the combination that achieves the best classification accuracy.

In our experiments we evaluate the quality of the final reconstruction by means of the
classification accuracy, which is a commonly adopted metric[14, 26, 34]. It is defined as the
percentage of correctly labeled pixels when projecting theestimated 3D scene layout into the
image. In order to evaluate if a pixel is correctly labeled, agroundtruth image is provided.
Labels indicate if the pixel should belong to the ground floor, to the ceiling or to a wall
numbered with an incremental counter. Please note that, forall the parameters described in
Sections3.3and3.4, the same configuration was used for all sequences.

4.2 Michigan Indoor Corridor Video Dataset
This dataset was proposed in [34] and consists of a set of image sequences collected in
various indoor environments with a calibrated camera mounted on a mobile robot. The
camera is set up to present zero tilt (pitch) and roll angles and known fixed height with
respect to the ground floor. The authors in [34] state that their approach strictly relies on these
specific setup constraints and on the ground-walls’ boundaries detected in the images. This
implies that, if the observer does not move parallel to the ground with known height and if
those boundary lines are not observed, the approach will notbe able to generate initial layout
hypotheses. On the other hand, our approach does not requireany of these assumptions.

The quantitative results of the tests on this dataset are presented in Table1, while Fig-
ure 4 shows a visual overview of our performance. There are a few sequences for which
neither SLAM nor VisualSfM are able to produce any 3D reconstruction due to the very
small amount of motion of the observer (insufficient parallax). These sequences were not
taken into account for the evaluation. Please note that the method in [34] cannot recover
the ceiling part of the scene layout, therefore the authors did not include these pixels in the
evaluation of the performances. Since our approach as well as [16] and [14] are able to
estimate the ceiling component of the scene layout, and in order to present a more com-
plete comparison, we add in Table1, beside the original values, the results where ceilings
are included in the evaluation. Please note that, when excluding the ceiling, the proposed
method is second only to [34] (which was designed to work in specifically such constrained
scenarios), while, when taking into account the whole scene, including ceiling, the proposed
method outperforms all other approaches, while operating in significantly less constraining
conditions.
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Figure 4: Some examples of our results on the dataset presented in [34]. The top row shows the
reprojection of the best layout hypothesis into the image, while the bottom row shows the same layout
hypothesis in the 3D space along with the camera pose.

4.3 Proposed dataset
The sequences in the dataset [34] feature substantially simple environments, as can be seenin
the 3D reconstructions in Figure4. With this paper we introduce a new dataset [1] to evaluate
the full capabilities of our approach. As opposed to the previous dataset, we let the observer
freely move (6DoF) around to observe the scene. We collected10 sequences in a variety
of environments, spanning offices, corridors and large rooms. Most of the sequences frame
ground-walls boundaries for short periods or do not frame them at all; some present scenes
that cannot be represented by a simple box layout model or relying on the Manhattan world
assumption. All the sequences were collected with common smartphones, in the attempt to
test the proposed method in real-life scenarios with low-cost sensors.

The classification accuracy results and the mean execution speed (in fps) of the tests on
this dataset are presented in Table2, while Figure5 shows a visual overview of the dataset
and of our performance. In Table2, please note that: i) the proposed method significantly
outperforms state-of-the-art methods in both classification accuracy and execution time; ii)
when feeding the proposed approach with the SfM reconstructions, in order to keep the
execution time reasonable, both SfM and the optimization procedure were run on a small
subset of frames which, despite the ability of SfM to producedenser reconstruction with
respect to SLAM, led to worst reconstruction results.

Please refer to the supplementary material [1] for a discussion of failure and success
cases, additional images and the complete table of the experimental results.

5 Conclusions
In this paper we presented a real-time oriented approach forindoor scene understanding,
addressing the problem of estimating the 3D structural layout of complex and cluttered in-
door scenes from monocular video sequences, where the observer can freely move in the
surrounding space. The proposed probabilistic framework allows us to generate, evaluate
and optimize layout hypotheses by integrating new image evidence as the observer moves.
The proposed effective inference engine allows us to make less limiting assumptions than
other state-of-the-art methods (e.g., Manhattan world assumption, known and fixed cam-
era height). In the extensive experimental evaluation we demonstrate that our formulation
reaches near-real-time computation time and outperforms state-of-the-art methods in both
classification accuracy and computation time, while operating in significantly less constrain-
ing conditions.
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Figure 5:Some examples of our results on the proposed dataset. The toprow shows the reprojection
of the best layout hypothesis into the image, while the bottom row shows the same layout hypothesis
in the 3D space along with the camera pose.
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