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Abstract

Many works have been presented for indoor scene underatangkt few of them
combine structural reasoning with full motion estimationd real-time oriented ap-
proach. In this work we address the problem of estimating3estructural layout
of complex and cluttered indoor scenes from monocular vegEpiences, where the ob-
server can freely move in the surrounding space. We proposffective probabilistic
formulation that allows us to generate, evaluate and opérayout hypotheses by inte-
grating new image evidence as the observer moves. Compartdté-of-the-art work,
our approach makes significantly less limiting hypothedesitithe scene and the ob-
server (e.g., Manhattan world assumption, known camerémotWe introduce a new
challenging dataset and present an extensive experimevaalation, which demon-
strates that our formulation reaches near-real-time coatipn time and outperforms
state-of-the-art methods while operating in significafgls constrained conditions.

1 Introduction

The indoor scene reconstruction problem has sparked limtdyest in the research commu-
nity in the past few years. The ability to understand thecstmal geometry of living spaces
allows, for example, autonomous robots to safely move irstireounding environment, as
well as the development of augmented reality applicatidviany contributions have been
proposed to either address the problem of recognizing seraiy meaningful components,
such as floor or walls in 2D images, or the problem of genegatjparse 3D point-cloud
maps of the observed scene while moving within it. By contifesy works have addressed
the problem of reconstructing semantically consistenbardstructures (also referred to as
3D scene layout, see Figut® and refining layout hypotheses by integrating new evidenc
acquired as the observer moves around. Among those thaingigljfcations are made to
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Figure 1:3D scenelayout estimation process. The video sequence is first processed to obtain camera
localization and sparse 3D point cloud reconstruction. duayomponents (e.g. floor, ceiling, walls)
are generated from the sparse 3D points and combined toajeriayout hypotheses (see Sectin
Each layout hypothesis is evaluated and optimized by irwating new image evidence. The final 3D
scene layout is represented by the hypothesis that beterides the scene (see Sect®)n

solve the problem, such as the Manhattan world assumptemtiafly or fully known ob-
server motion, and occasionally human intervention forraem initialization.

In this paper we pursue a semantically consistent recarigiruof the structural ele-
ments in indoor scenes, excluding any a priori knowledgéefabserver's motion, human
intervention, or hard Manhattan constraints. We start bgeoling in our experiments that
state-of-the-art 3D reconstruction techniques, such a@svBand SfM, are far from achiev-
ing reliable results that can be directly translated to da&igemantic reconstruction. This
phenomenon is particularly noticeable when the observedescare highly cluttered and/or
mostly featureless. We therefore propose a probabilistiméwork, to be fed with such
noisy elaborations, that allows us to efficiently integmaggv evidence to generate, evaluate
and refine 3D layout hypotheses as the observer moves thtbegieene. Different types of
information extracted from images (points, lines, reg)arsd, potentially, from other kind
of sensors, can be easily merged into our probabilistic fdation, allowing us to cope with
both clutter and featureless surfaces.

We present extensive experimental results on challengiggences, demonstrating im-
provement over state-of-the-art approaches while operatisignificantly less constraining
conditions and in near-real-time (in the order~020fps). We propose a new challenging
dataset to prove the full capacities of the proposed methddmich is available for future
comparisonsi].

1.1 Related work

Sparse 3D reconstruction.  While the objective of this work is 3D indoor scene layout
understanding, our approach hinges on the success of gpamestruction methods, such
as structure from motion (SfM), simultaneous localizatioil mapping (SLAM), or parallel
tracking and mapping (PTAM). SfM methods usually processsp set of images from
which partial geometry is recovered and use optimizatiothots (e.g., bundle adjustment)
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to obtain reconstructions that are globally consistést B2, 35. They are often used to
model large scale environments such as cities2p, 28 and are capable of fusing data
from different types of sensors like mono/stereo cameidsl &nd GPS. SLAM methods
are primarily based on Bayesian filtering, [6, 20, 21, 29). A key feature of all SLAM
approaches is to update the filter status with new evidentaa&d from each image in
the sequence. An alternative strategy is taken by appreaaieh as PTAM 17] which,
instead, rely on optimizing a smaller number of key-framgis@ bundle adjustment1p]
move toward a higher level representation by introducingdiand planes into a standard
EKF SLAM system, which allows them to collapse the EKF statace. Most of these
reconstruction methods, however, just recover the enmigart as a collection of sparse 3D
points, lines or planes, without being able to identify thgortant semantic phenomena in
the scene.

Singleimage. Many works have been recently proposed to solve the probfeimdoor
scene layout estimation from single images. Most of thedboaks leverage machine learn-
ing techniques for solving the inherent ambiguity of the 852D mapping g, 14, 15, 16,
18, 24, 25, 27]. The advantage of these techniques is that they recongiiriscene as a col-
lection of semantically meaningful components such as $loerlls or doors and identify
those in 2D images. Reasoning about vanishing points os ifi¢ghe scene is often used to
help segment regions of interest. These methods, howewst|ynfocus on obtaining a 2D
or, often, a 2.5D layout estimation of the scene (i.e. idgntalls and floors in the image)
and fail to achieve an accurate metric 3D estimation of treevggdrical properties of the en-
vironment as we seek to do. Moreover, none of these achial#imee performances, except
for [25].

Multiple images/sensors. A number of works have looked at inferring the scene layou
from multiple images. Sinhet al. [27] proposed a multi-view stereo method to generate
piecewise planar depth maps from sparse images. This agpessumes that strong line
elements can be extracted from images. Firdl. [7, 8, 9] present a model that leverages
the Manhattan world assumption to estimate dominant varggioints and relates them with
learned photometric cues. Similarly, Furukasyal. [10, 11] rely on Manhattan assumption,
but model the reconstruction problem as an MRF. Xdal. [36] propose a method (Inverse
CSG) based on dense 3D laser scans and imagery to obtain@adigiic reconstructions
of museums.

Real-time. All of the approaches to semantic layout estimation perfosli below real-
time speeds and either rely on slow robust SfM camera poseaiin and/or on scene-
dependent learning. Tsaf al. [33, 34] focus on real-time indoor scene estimation tasks
for mobile robot applications. They exploit video sequenitevalidate and support layout
hypotheses and drop the Manhattan world assumption. Howiey tackle a simplified
problem, where the observer is a robotic agent with eithemknroto-translation between
camera and floor plang{] or known full pose of the robot at each time st&§38][ Fur-
thermore, they generate layout hypotheses by projectimg-flall intersection boundaries
(observed in the images) onto the known ground plane, whieans that if those lines are
not observed, the entire layout hypothesis will not be gatee.

1.2 Contributions
In this paper we propose an efficient method for estimatingr&dor layout from an ar-
bitrary 6DoF moving monocular observer, whose motion igvested usingstate-of-the-art
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Figure 2:Left: a noisy sparse 3D reconstruction. Center: a large murabcandidate layout com-
ponents obtained with plane fitting. Right: The process ofegating layout hypotheses as random
combinations of candidate layout components.

technigues such as SLAM and key-framed SfM. Our method buiftbn prior work in the
following ways:

Eliminating the hard Manhattan world assumption.

Requiring noa priori knowledge of the observer motion with respect to the scene.
Operating at near-real-time speedg0fps).

Introducing a new challenging dataset which features alett, non-Manhattan and
non-box-shaped scenes.

2 Method Overview

In this section we describe the framework within which latybypotheses are generated,
evaluated and updated or rejected. Figushiows a pictorial representation and a schematic
diagram of the whole process.

Sparse 3D reconstruction. As the observer moves in the surrounding environment and
the image stream is acquired, we first pre-process sequwiittea localization and sparse
3D reconstruction algorithm. Since our main contributismot related to this problem, we
designed our framework to be able to work with any algorithat ttan provide a camera
motion estimation and a cloud of 3D points. In our experirmem compare two such ap-
proaches: a real-time implementation of the Monocular \VABLapproach proposed ir2B]

and the non-real-time VisualSfMB]. Notice that these 3D reconstructions are in general
noisy and sparse (Figuga)).

Hypothesesinitialization. The second step consists of generating a higher level mpres
tation of the 3D points estimated in the pre-processing@h8sveral types of geometrical
primitives are suitable for this purpose. In our case, wéelela piecewise planar repre-
sentation is the most appropriate for indoor scene reptaen. \We fit a large number of
planes to the 3D points so as to generate a large number @nfjadty inaccurate) candi-
dates of layout components, i.e. walls, floor, ceiling (Fegz(b)). In our experiments we
implemented an iterative RanSaC plane fitting proceduréchwive optimized for indoor
scenes by allowing peripheral fitted points to be re-inj@dtethe iteration process, since
these points potentially lay on the intersection of two pk&an

Layout estimation. In the last step, which constitutes the core of our propostatence
engine, we generate layout hypotheses as random comhisaticandidate layout compo-
nents (Figure2(c)). Each layout hypothesis is evaluated at each time framedmgsaring
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(d)

Figure 3: From left to right, an example of indoor scene and of the diaruin time of particles
throughout the optimization process. Note how the unlikelyout hypotheses disappear while the
most plausible ones survive and get refined.

its compatibility with observations(g. image points and lines) and geometrical constraint
across frames. During this process, each layout is “pestiirby locally adjusting, opti-
mizing, merging or splitting layout components. There dffeent approaches to manage
sets of hypotheses. In this paper we choose to integraterobabilistic framework within

a particle filter structure. This choice allows us to explycformulate the problem in a
parallel-computing oriented fashion (particles are iretefent from each other), which can
lead to high efficiency gains in computation time. The outgfuhe optimization procedure
is an estimation of the 3D scene layout, which is obtaineddbgcsing the layout hypothesis
with the best set of layout components (see Se@)on

Advantages. There are two important advantages stemming from the chao@ntioned
above: i) the local optimization step applied to each laysmmponent helps recover from
noisy initialization (transition from Figur8(b) to Figure3(c)) while keeping the computa-
tion amount affordable for real-time applications. Thisikcbnot be achieved with standard
“brute force hypothesize and test* approacheg, [18, 19]; ii) the choice of embedding
our probabilistic formulation within a particle filter alsdlows us to e exploit some critical
properties of particle filters, like multi-modal posteriepresentation, re-sampling, particle
clustering and, most importantly, recover from substéigti@rong

initializations (transition from Figurd(c)to Figure3(d)).

3 Probabilistic Layout Estimation

As stated above, the input to our inference engine is an insageence from which the
camera motion and sparse 3D points are estimated. Thesei8f3 pee used to generate
layout components (walls, floor, ceiling) by fitting a largenmber of planes through such
points (see Sectio?). The output of the inference engine is the layout hypothissit better
explains the scene in terms of compatibility with obsensdiand geometrical constraints.
At the heart of our approach is a particle filter-based oation [3Q] that is capable of
processing candidate layout components so as to obtaisiplawscene layouts, where the
layout hypotheses represent the particles of the filter. ltts &any optimization strategy, this
requires four key components: a principled choice of thelayarameterizatior3(1); an
initialization strategy §.2) to generate the initial layout hypotheses; a method fotogim
the state space(3); a score function3.4) to evaluate the quality of layout hypotheses. In
the following section, we will discuss each of these aspieatetails.

3.1 Layout Parametrization

While much prior work has leveraged the Manhattan world imggion, we believe this is
a limiting hypothesis. To overcome this limitation, in thgaper we adopt a representation
similar to [33, 34] (sometimes referred to as Soft Manhattan), which make$alfmving



6 A. FURLAN et al: FREE YOUR CAMERA

assumptions about the environment: i) ground plane anthgeaire parallel; ii) walls are
only constrained to be orthogonal to the ground plane (ailohgg iii) there can be any
number of walls and each wall can be displaced at any angle ne@pect to other walls.
Thus a room layout is fully parametrized by its gravity vectihe heights of its ground
and ceiling, and a set of walls with only one degree of freedonrotation and one for
translation.

3.2 Initializing Layout Hypotheses

A layout hypothesis is generated as follows. We first deteentiie rough direction of grav-
ity as given by an IMU or, if none is present, by assuming that¢amera optical axis is
roughly horizontal when the sequence begins. The heigliteofitound and ceiling are then
approximated by the lowest and highest features tracked. By/#SfM along this direction.

If they are not observed at initialization time, their hagill be underestimated at first and
adjusted as more parts of the scene are observed. Subdgggmmnpling from the initial set
of planes fitted to the 3D points obtained from the SLAM/SfMaestruction (Sectiof),
each layout hypothesis is assigned a random number of ctediclls (Figure(c)). While
being assigned to the layout hypothesis, each wall is toamsfd by finding the minimal
transformation needed to make it orthogonal to the ground.

3.3 Exploring the State Space

The above step gives a very rough estimate of the scene lalyoatder to refine this esti-

mate, we propose to “perturb” the layout components asdigmtine layout hypothesis. This
can be done within the hypothesis itself or by generating afseew hypotheses. Given a
layout hypothesis at time t-1, we may “perturb” it or genermnew hypothesis by:

Rotating the ground plane about a random direction by somgke &y

Translating the ground or ceiling by some distardgeor dc

Rotating walli about the gravity vector b§!, and optimizing its reprojection error
Translating wall by some distance!, and optimizing its reprojection error
Removing a wall which is currently hypothesized

Adding a wall which had been removed

Taking no action

wherefy, dg, dc, 8,, andd}, are normally distributed. For each particle in the filteryon
a single action may be performed per time step, as determbyadveighted coin flip.

3.4 Scoring Hypotheses
At each timestep, we wish to assign a probability to a particular hypothetsiking into
account new observations and geometrical constraints:

R = [PHPo(6)R (&) [] P (@R (6 )P (RD™ @)
| J

where the binary termp;j; anda;j are initially zero. pj; is set to 1 if wallsi and j are
near-parallel by some angular threshold apdis set to 1 if they are adjacent. We have
designed this probability to enforce a number of desirald@erties.

Fitness: The initial pre-processing yields planes with varying doess of fit. Thus, to
each visible wall, we assign a corresponding fitness ue}rmepresented by a zero-mean
Gaussian over the residual least-square error after tine ffiling process.

Orthogonality to Ground: In Section3.2we described a method for generating orthog-
onal wall candidates from non-orthogonal planes. The mioesd planes are altered, the
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less they are supported by data. We capture this with a zesnGaussiaR)(8), whered
denotes the amount of rotation required to orthogonalizenll to the ground.

Low Reprojection Error: Many feature points tend to fall on the ground, ceiling, ailes
of a scene. To make use of these visual cues, we track feaisireg the Kanade-Lucas-
Tomasi methodJ1]. To be robust to outliers, we discard those matches whiadoild
not have come from a plausible camera motion, or ii) don'telehomography with a
minimum number of other points in the scene. At tilmeve project the keypoints at- 1
onto all possible walls, and evaluate their hinge-loss Zibajection error. Each pointis then
assigned to the wall which minimizes its reprojection eramd the average is computed.
For each wall we assign a probabil®(e ), which is normally distributed about 0 pixels.

Manhattan Layout: While we do not leverage the Manhattan assumption to génkrg
out hypotheses, we recognize that angles are far more ligéfl in 90° or 45 increments
than, e.g., 87 To capture this, for each pair of visible walls we includeatPy) (@), where
@ is their relative angle modulo 9@or 45°) andPy} is a zero-mean Gaussian.

Simplicity: Adding more walls will always improve reprojection errgkctual layouts,
however, are fairly simple: they are far more likely to cantane large wall than many
small ones. To enforce this, for two near-parallel walls ssign a probabilityPs (d—1)
which captures how redundant walk given the presence of wal] d meters away. This is
normally distributed abOL% =0, 0rd — oo.

Wall-wall intersection: Small errors in the estimation of wall rotations can notddably
captured by the reprojection error term. Yet, such smatirsican lead to substantial errorsin
the displacement of the intersection between two walls. ¥goi this intuition by assigning
a probabilityR}] that weights the image evidence supporting an intersebitween walls
i and j. To obtain this evidence, the 3D line segment resulting ftbm intersection is
projected into the image and there compared against 2Ddigyments extracted with a Canny
edge detectord].

The final output of the optimization procedure is an estioratf the 3D scene layout,
obtained by selecting the layout hypothesis which bestrdescthe scene in terms of the
score function in EqLl.

4 Results

In this section we show experimental results of our methoebsted on the state-of-the-art
dataset34], as well as on a new challenging dataset that we introduti@srpaper and that
is available for future comparisod][ To the best of our knowledge, the datas®][is the
only state-of-the-art dataset that can be used for congrafs this type of problem. Since
our method requires video sequences as inputs, some dataseiot be used for evaluation
because they feature single imag&4]] non-video (i.e. sparse) images) 11] or they are
no longer available?, 9].

4.1 Experimental setup

We first run two sparse 3D reconstruction techniques, RTI8L[A3] and VisualSfM B5],
and feed the generated 3D point clouds and camera pose &stigt® our algorithm, which
outputs the final 3D layout reconstruction. Final recortdtaun results are compared to:

e State-of-the-art approaches: the video-based approach proposed3dd][and two
well known single image methodsl§] and [14] (Sectionl1.1). For completeness, in
Tablel we report the results oflf] composed with a MRF over image frames. Please
refer to 34] for a comprehensive description of this composition.
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Method Excl. ceil | Incl. ceil Method Clas. acc.| Avg. fps
[34] 90.58 82.17 Baseline 70.64 —
[16] 82.62 83.30 [16] 59.29 0.17
[16]+MRF 81.44 82.13 [14) 73.59 0.03
[14] 84.70 84.33 Our + VSLAM 86.24 21.63
Our + VSLAM 86.92 87.01 Our + VSiM 75.94 16.90

Table 1: Classification accuracy on the Michi- Table 2:Classification accuracy on the proposed
gan Indoor Corridor Video Dataset. Our resultdataset. Our results (with SLAM and SfM) are
are compared to the results obtained wisd][ compared to the results obtained with a naive
[16] and [14]. baseline method 1p] and [14].

e Basgline method: in order to show the importance of the evaluation and op#tion
process (Sectio8), we built a baseline method consisting in projecting alplossible
combination of layout components (i.e. fitted planes, sefi@e?) into the image and
picking the combination that achieves the best classifinadtcuracy.

In our experiments we evaluate the quality of the final retoieson by means of the
classification accuracy, which is a commonly adopted mgtrc26, 34]. It is defined as the
percentage of correctly labeled pixels when projectingttenated 3D scene layout into the
image. In order to evaluate if a pixel is correctly labeledraundtruth image is provided.
Labels indicate if the pixel should belong to the ground fldorthe ceiling or to a wall
numbered with an incremental counter. Please note tha|lftre parameters described in
Sections3.3and3.4, the same configuration was used for all sequences.

4.2 Michigan Indoor Corridor Video Dataset

This dataset was proposed iB4] and consists of a set of image sequences collected in
various indoor environments with a calibrated camera mexlioin a mobile robot. The
camera is set up to present zero tilt (pitch) and roll anghes lkenown fixed height with
respect to the ground floor. The authors3d][state that their approach strictly relies on these
specific setup constraints and on the ground-walls’ boueslaetected in the images. This
implies that, if the observer does not move parallel to treugd with known height and if
those boundary lines are not observed, the approach wilimable to generate initial layout
hypotheses. On the other hand, our approach does not requiie these assumptions.

The quantitative results of the tests on this dataset aepted in Tabld, while Fig-
ure 4 shows a visual overview of our performance. There are a feueseces for which
neither SLAM nor VisualSfM are able to produce any 3D recardion due to the very
small amount of motion of the observer (insufficient pargllaThese sequences were not
taken into account for the evaluation. Please note that tsad in B4] cannot recover
the ceiling part of the scene layout, therefore the authimrsidt include these pixels in the
evaluation of the performances. Since our approach as wdllGh and [L4] are able to
estimate the ceiling component of the scene layout, andderao present a more com-
plete comparison, we add in Takle beside the original values, the results where ceilings
are included in the evaluation. Please note that, when éxauhe ceiling, the proposed
method is second only t&f]] (which was designed to work in specifically such constrdine
scenarios), while, when taking into account the whole scactiding ceiling, the proposed
method outperforms all other approaches, while operatirgignificantly less constraining
conditions.
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Figure 4: Some examples of our results on the dataset presente#fjin The top row shows the
reprojection of the best layout hypothesis into the imadd@lenthe bottom row shows the same layout
hypothesis in the 3D space along with the camera pose.

4.3 Proposed dataset

The sequences in the datas#f][feature substantially simple environments, as can beiseen
the 3D reconstructions in Figude With this paper we introduce a new datasgtp evaluate
the full capabilities of our approach. As opposed to the jpievdataset, we let the observer
freely move (6DoF) around to observe the scene. We colleblesequences in a variety
of environments, spanning offices, corridors and large dvost of the sequences frame
ground-walls boundaries for short periods or do not franeertlat all; some present scenes
that cannot be represented by a simple box layout modelyingedbn the Manhattan world
assumption. All the sequences were collected with commartpmones, in the attempt to
test the proposed method in real-life scenarios with lostsensors.

The classification accuracy results and the mean execyigeds(in fps) of the tests on
this dataset are presented in TaBJevhile Figure5 shows a visual overview of the dataset
and of our performance. In Tab® please note that: i) the proposed method significantl
outperforms state-of-the-art methods in both classificasiccuracy and execution time; ii)
when feeding the proposed approach with the SfM reconsnsstin order to keep the
execution time reasonable, both SfM and the optimizatiat@dure were run on a small
subset of frames which, despite the ability of SfM to proddeeser reconstruction with
respect to SLAM, led to worst reconstruction results.

Please refer to the supplementary materidlfpr a discussion of failure and success
cases, additional images and the complete table of the iexpeatal results.

5 Conclusions

In this paper we presented a real-time oriented approachémor scene understanding,
addressing the problem of estimating the 3D structuraldagd complex and cluttered in-
door scenes from monocular video sequences, where thevebsamn freely move in the
surrounding space. The proposed probabilistic framewtokva us to generate, evaluate
and optimize layout hypotheses by integrating new imageéesde as the observer moves.
The proposed effective inference engine allows us to madelimiting assumptions than
other state-of-the-art methods (e.g., Manhattan worldrapsion, known and fixed cam-
era height). In the extensive experimental evaluation waalestrate that our formulation
reaches near-real-time computation time and outperfotats-sf-the-art methods in both
classification accuracy and computation time, while ojegah significantly less constrain-
ing conditions.
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Figure 5:Some examples of our results on the proposed dataset. Thevicghows the reprojection
of the best layout hypothesis into the image, while the ottow shows the same layout hypothesis
in the 3D space along with the camera pose.
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