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Many works have been presented for indoor scene understanding, yet
few of them combine structural reasoning with full motion estimation in
a real-time oriented approach. In this work we address the problem of es-
timating the 3D structural layout of complex and cluttered indoor scenes
from monocular video sequences, where the observer can freely move
in the surrounding space. We propose an effective probabilistic formu-
lation that allows to generate, evaluate and optimize layout hypotheses
by integrating new image evidence as the observer moves. Compared to
state-of-the-art work, our approach makes significantly less limiting hy-
potheses about the scene and the observer (e.g., Manhattan world assump-
tion, known camera motion). We introduce a new challenging dataset and
present an extensive experimental evaluation, which demonstrates that
our formulation reaches near-real-time computation time and outperforms
state-of-the-art methods while operating in significantlyless constrained
conditions.

Figure 1 shows a pictorial representation and a schematic diagram of
the whole process.
Sparse 3D reconstruction. As the observer moves in the surrounding en-
vironment, we first pre-process sequences with a localization and sparse
3D reconstruction algorithm. In our experiments we comparetwo such
approaches: a real-time implementation of the Monocular V-SLAM ap-
proach proposed in [4] and the non-real-time VisualSfM [6].These 3D
reconstructions are in general noisy and sparse.
Candidate layout components. The second step consists of generat-
ing a higher level representation of the 3D points estimatedin the pre-
processing phase. Several types of geometrical primitivesare suitable for
this purpose. In our case, we believe a piecewise planar representation
is the most appropriate for indoor scene representation. Wefit a large
number of planes to the 3D points so as to generate a large number of
(potentially inaccurate) candidates of layout components, i.e. walls, floor,
ceiling. In our experiments we implemented an Iterative RanSaC plane
fitting procedure, which we optimized for indoor scenes by allowing pe-
ripheral fitted points to be re-injected in the iteration process, since these
points potentially lay on the intersection of two planes.
Layout Parametrization While much prior work has leveraged the Man-
hattan world assumption, we believe this is a limiting hypothesis. To
overcome this limitation, in this paper we adopt a representation similar
to [5] (sometimes referred to as Soft Manhattan), which makes the fol-
lowing assumptions about the environment: i) ground plane and ceiling
are parallel; ii) walls are only constrained to be orthogonal to the ground
plane (and ceiling); iii) there can be any number of walls andeach wall
can be displaced at any angle with respect to other walls.
Layout estimation. In the last step, constituting the core of our proposed
inference engine, we generate layout hypotheses as random combinations
of candidate layout components. Each layout hypothesis is evaluated at
each time frame by measuring its compatibility with observations (e.g.
image points and lines) and geometrical constraints acrossframes. During
this process, each layout is “perturbed” by locally adjusting, optimizing,
merging or splitting layout components. There are different approaches
to manage sets of hypotheses. In this paper we choose to integrate our
probabilistic framework within a particle filter structure. This choice al-
lows to explicitly formulate the problem in a parallel-computing oriented
fashion (particles are independent from each other), whichcan lead to
high efficiency gains in computation time. The output of the optimization
procedure is an estimation of the 3D scene layout, which is obtained by
selecting the layout hypothesis with the best set of layout components.

Figure 1:3D scene layout estimation process. The video sequence is first pro-
cessed to obtain camera localization and sparse 3D point cloud reconstruction.
Layout components (e.g. floor, ceiling, walls) are generated from the sparse 3D
points and combined to generate layout hypotheses. Each layout hypothesis is
evaluated and optimized by incorporating new image evidence. The final 3D scene
layout is represented by the hypothesis that better describes the scene.

Scoring Hypotheses At each timestept, we wish to assign a probabil-
ity to a particular hypothesis, taking into account new observations and
geometrical constraints:
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We have designed this probability to enforce a number of desirable
properties (e.g. low reprojection error, description simplicity, physical
plausibility, etc.). Please refer to the main paper for a complete descrip-
tion of this scoring function and its components.
Experimental validation. We show experimental results of our method
when tested on the state-of-the-art dataset [5], as well as on a new chal-
lenging dataset [1] that we introduce in this paper. Final reconstruction
results are compared to three state-of-the-art approaches(the video-based
approach [5] and the two well known single image methods [2, 3]) and a
baseline method (to explicitate the importance of the evaluation and opti-
mization process).
Conclusions. In this paper we present a real-time oriented approach
for indoor scene understanding in cluttered environments.The proposed
probabilistic framework allows to generate, evaluate and optimize layout
hypotheses by integrating new image evidence as the observer moves. In
the extensive experimental evaluation we demonstrate thatour formula-
tion reaches near-real-time computation time and, while operating in sig-
nificantly less constraining conditions (e.g. soft Manhattan assumption,
complex scene geometry, freely moving observer), outperforms state-of-
the-art methods in both classification accuracy and computation time.
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