Free your Camera: 3D Indoor Scene Understanding from Arbitrary Camera Motion
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Many works have been presented for indoor scene underatangit
few of them combine structural reasoning with full motiotirestion in
a real-time oriented approach. In this work we address tblelem of es-
timating the 3D structural layout of complex and cluttereddor scenes
from monocular video sequences, where the observer caly frezve
in the surrounding space. We propose an effective prolsébiliormu-
lation that allows to generate, evaluate and optimize laygpotheses -
by integrating new image evidence as the observer moves p@eu to
state-of-the-art work, our approach makes significantg lémiting hy-
potheses about the scene and the observer (e.g., Manhattarassump-
tion, known camera motion). We introduce a new challengitgsket and
present an extensive experimental evaluation, which detrates that
our formulation reaches near-real-time computation time@utperforms

CAftha. ; o i nifi ; Figure 1:3D scene layout estimation process. The video sequence is first pro-
state-of-the-art methods while operating in significafelys constrained cessed to obtain camera localization and sparse 3D poiot agleconstruction.

{ Camera pose } Final layout
estimate

Generate candidates
of layout
by plane fitting

Layout components
(walls, floor, ceiling)

B
_

conditions. Layout components (e.g. floor, ceiling, walls) are generdtem the sparse 3D
Figure 1 shows a pictorial representation and a schematggalin of points and combined to generate layout hypotheses. Eacltldypothesis is
the whole process. evaluated and optimized by incorporating new image evieembe final 3D scene

Sparse 3D reconstruction. As the observer moves in the surrounding e'r?l-yOUt is represented by the hypothesis that better desctiie scene.

vironment, we first pre-process sequences with a locatizathd sparse Scoring Hypotheses At each timestep, we wish to assign a probabil-
3D reconstruction algorithm. In our experiments we compexe such ity to a particular hypothesis, taking into account new oetions and
approaches: a real-time implementation of the Monocul@L¥M ap- geometrical constraints:

proach proposed in [4] and the non-real-time VisualSfM [Bhese 3D

reconstructions are in general noisy and sparse. R=] P{Py(6)P! (e) [] P (@;)Ps (di )P (Rl ) (1)
Candidate layout components. The second step consists of generat- ! _ _ J N )
ing a higher level representation of the 3D points estimatetthe pre- We have designed this probability to enforce a number ofrdels

processing phase. Several types of geometrical primitivesuitable for Properties €g. low reprojection error, description simplicity, physica
this purpose. In our case, we believe a piecewise planaeseptation Plausibility, etc.). Please refer to the main paper for aslete descrip-
is the most appropriate for indoor scene representation.fitvéelarge tion of this scoring function and its components.

number of planes to the 3D points so as to generate a largearunib Experimental validation. We show experimental results of our method
(potentially inaccurate) candidates of layout componérgswalls, floor, When tested on the state-of-the-art dataset [5], as welhasmew chal-
ceiling. In our experiments we implemented an Iterative &#® plane lenging dataset [1] that we introduce in this paper. Finebnstruction
fitting procedure, which we optimized for indoor scenes bgvaihg pe- results are compared to three state-of-the-art approdtteesideo-based
ripheral fitted points to be re-injected in the iterationgess, since theseapproach [5] and the two well known single image methods JPasd a
points potentially lay on the intersection of two planes. baseline method (to explicitate the importance of the etadn and opti-

Layout Parametrization While much prior work has leveraged the Marfhization process).

hattan world assumption, we believe this is a limiting hyjesis. To Conclusions. In this paper we present a real-time oriented approach
overcome this limitation, in this paper we adopt a represtent similar for indoor scene understanding in cluttered environmente proposed

to [5] (sometimes referred to as Soft Manhattan), which make fol- probabilistic framework allows to generate, evaluate gotihdze layout
lowing assumptions about the environment: i) ground plareceiling NYPotheses by integrating new image evidence as the obseoxes. In

are parallel; i) walls are only constrained to be orthoddaahe ground the extensive experimental evaluation we demonstrateotivatormula-
plane (and ceiling); iii) there can be any number of walls aadh wall tion reaches near-real-time computation time and, whig@{ng in sig-
can be displaced at any angle with respect to other walls. nificantly less constraining conditions.g. soft Manhattan assumption,

Layout estimation. In the last step, constituting the core of our propos&gMPIex scene geometry, freely moving observer), outpesastate-of-
inference engine, we generate layout hypotheses as rarstobirations the-art methods in both classification accuracy and cortipatime.

of candidate layout components. Each layout hypothesisaiated at [1] URL http://wwv ira. di sco. uninib.it/free_your_canera.
each time frame by measuring its compatibility with obstores €.9. [2] Varsha Hedau, Derek Hoiem, and David Forsyth. Recogettie spatial layout
image points and lines) and geometrical constraints aéraseges. During of cluttered rooms. INCCV, 2009.

this process, each layout is “perturbed” by locally adjugtioptimizing, [3] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recdug surface layout
merging or splitting layout components. There are diffempproaches  fromanimagelJCV, 75(1), 2007.

to manage sets of hypotheses. In this paper we choose toateemur [4] Cyril Roussil!on, Aurélie_n Gonzalt_ez, Joan Sola, Jeaarig! CodoI,INicoIas
probabilistic_ f_ramework within a particle_ filter structur§hi_s cho_ice al- :\iﬂrﬁg-\zi[il Z';nn??JS;:SZ&QRS&EQ?IZESX Rt-slam: A geaernd real-
Iows. to expllgltly formu!ate the problem in a parallel-comp\g oriented [5] Grace Tsai, Changhai Xu, Jingen Liu, and Benjamin KispeReal-time in-
fashion (particles are independent from each other), whahlead to door scene understanding using bayesian filtering withanatiies. IHCCV,
high efficiency gains in computation time. The output of tpémization 2011.

procedure is an estimation of the 3D scene layout, which tagieéd by [6] Changchang Wu, Sameer Agarwal, Brian Curless, and BtekeSeitz. Mul-
selecting the layout hypothesis with the best set of layonimonents. ticore bundle adjustment. I@VPR, 2011.



