

# Free your Camera: 3D Indoor Scene **Understanding from Arbitrary Camera Motion**



### A. Furlan<sup>1</sup>, S. Miller<sup>2</sup>, D. G. Sorrenti<sup>1</sup>, L. Fei-Fei<sup>2</sup>, S. Savarese<sup>2</sup>

<sup>1</sup>Computer Science Department – University of Milano - Bicocca <sup>2</sup>Computer Science Department – Stanford University

*{furlan, sorrenti}@disco.unimib.it* 

{sdmiller, feifeili, ssilvio}@stanford.edu

#### **Overview**

Problem statement

•3D Indoor semantic layout estimation Full 6DoF freely moving observer No hard Manhattan assumptions Near real-time performances





### Experiments

Tested on the Michigan Indoor Corridor dataset [1] Introduction of a new challenging dataset

#### **Proposed approach**

### Sparse 3D reconstruction

Estimate camera pose and a sparse map with: •Fast Monocular V-SLAM – All frames in real-time Slow VisualSfM – Few frames to preserve real-time

## Layout definition

Made of layout components (walls, ground, floor) Walls are orthogonal to the ground plane Arbitrary number of walls, not mutually orthogonal

#### Experiments

- Michigan Indoor Corridor dataset [1]
  - Indoor video sequences from a mobile robot
  - Object-free corridor scenes
- Proposed dataset
  - Indoor video sequences from hand-held smartphone
  - Various cluttered scenes
    - Offices, corridors, large rooms
    - Complex layouts (not box-room, not Manhattan)
- Results

### Layout estimation

Iterative RanSaC plane fitting Large number of inaccurate layout components Initialize layout hypotheses as random combinations of layout components Local perturbation and optimization of hypotheses Each hypothesis is a particle in a particle filter

### Scoring hypotheses

 $P_{t} = \prod P_{f}^{i} P_{o}^{i}(\theta_{i}) P_{r}^{i}(e_{r}^{i}) \prod P_{m}^{ij}(\phi_{ij}) P_{s}^{ij}(d_{ij}^{-1})^{p_{ij}} (P_{w}^{ij})^{a_{ij}}$ 

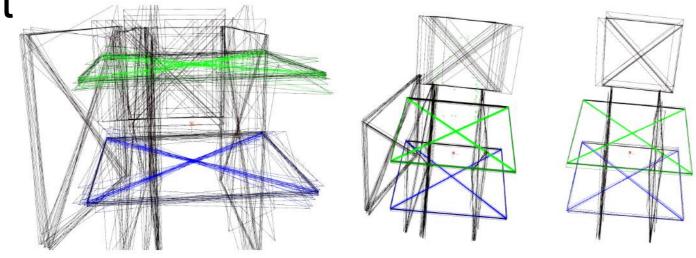
Terms in the score function enforce fitness (P<sub>f</sub>), orthogonality to ground ( $P_0$ ), reprojection error ( $P_r$ ), wall-to-wall orientation (P<sub>m</sub>), simplicity (P<sub>s</sub>), wall-to-wall

- Our method significantly outperforms [1], [2] and [3] in both classification accuracy and execution time
- Table below:
  - Left Results on the Michigan Indoor Corridor dataset [1] (excluding and including ceiling)
  - Right Results on the proposed dataset (classification accuracy and computation time)



| Method      | Excl. ceil | Incl. ceil |
|-------------|------------|------------|
| [1]         | 90.58      | 82.17      |
| [2]         | 82.62      | 83.30      |
| [ 2 ]+MRF   | 81.44      | 82.13      |
| [3]         | 84.70      | 84.33      |
| Our + VSLAM | 86.92      | 87.01      |

| Method      | Clas. acc. | Avg. fps |
|-------------|------------|----------|
| Baseline    | 70.64      |          |
| [2]         | 59.29      | 0.17     |
| [3]         | 73.59      | 0.03     |
| Our + VSLAM | 86.24      | 21.63    |
| Our + VSfM  | 75.94      | 16.90    |


*intersection* (P<sub>w</sub>).

### Advantages:

- No hard Manhattan assumptions
- No *a priori* knowledge of the observer motions w.r.t. the scene Near-real-time performances (~20fps)

Particle filter implementation allows recovering from noisy and wrong initialization exploiting multimodal posterior, re-

sampling and particle clust



[1] Grace Tsai, Changhai Xu, Jingen Liu, and Benjamin Kuipers. Real-time indoor scene understanding using bayesian filtering with motion cues. In ICCV, 2011.

[2] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering the spatial layout of cluttered rooms. In ICCV, 2009. [3] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recovering surface layout from an image. IJCV, 75(1), 2007.

### Conclusions

- Real-time oriented approach for indoor scene understanding
- Probabilistic framework to generate, evaluate and optimize layout hypotheses
- Extensive experimental evaluation, that demonstrates that our formulation outperforms state-of-the-art methods in both classification accuracy and computation time
- Dataset available: <u>http://www.ira.disco.unimib.it/free\_your\_camera</u> http://vision.stanford.edu/3Dlayout/

This work was partially funded by a NSF CAREER award N.1054127 and a gift award from HTC, the PRIN 2009 grant "ROAMFREE" and the Hertz Foundation Google Fellowship.