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Abstract— This paper deals with the probabilistic 6DoF
motion model of a wheeled road vehicle. It allows to correctly
model the error introduced by dead reckoning. Furthermore, to
stress the importance of an appropriate motion model, i.e., that
different models are not equally good, we show that another
model, which was previously developed, does not allow a correct
representation of the uncertainty, therefore misguiding 3D-
6DoF Monte Carlo Localization. We also present some field
experiments to demonstrate that our model allow a consistent
determination of the 6DoF vehicle pose.

I. INTRODUCTION

In urban settings, autonomous driving is more similar
to mobile robotics, because of the need to have a global
localization of the vehicle. Localization cannot be managed
using purely dead reckoning, e.g., wheel based odometry
[1] [2] [3]. Wheel sliding, e.g., due to contact with the ground
surface, weather conditions, unexpected values of the wheels
diameters, etc., require the use of external sensors and the
corresponding algorithms, to determine the vehicle position
[2]. It must be noticed that in urban environments the GPS
system, apparently an immediately available solution, has
an absolutely not adequate reliability, with respect to the
localization and navigation requirements, due to the frequent
lack of signal [4] [5].

While the state of the art provides different solutions for
the 2D - 3DoF localization problem, these solutions are
primarily designed for indoor robotic environments, where
the analysis of the motion in a 3D space can be simplified,
favoring an estimation of the robot pose limited to a 3DoF
pose in the 2D plane. 3D approaches known in the literature,
e.g., [4], [5], [6] base on adapting 2D movements to the 3D
space. These approaches adopt a 3DoF probabilistic motion
model in 2D that do not allow accurate modeling of the
uncertainty of a 6DoF movement in a 3D space.

One might argue that a motion model might be not be
necessary at all. This might be true when the localization
algorithm could be executed at such an high frequency that
the displacement involved between two subsequent activa-
tions of it, is so short that it is reasonable to model the pose
uncertainty as normal, and affecting independently the single
components of the pose. The larger the displacement between
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two activations, the larger the uncertainty of the odometric
estimate. Such large uncertainty requires, on one hand a very
large number of samples (in current state of the art sample-
based approaches), on the other - most important - side, it
is unrealistically shaped. Conversely, a proper motion model
allows to focus samples where it is realistically possible to
have the true pose.

In [5] the robot poses are modeled only in 2D, i.e., the
state includes only the components x, y, and ϑ (yaw). The
other 3 components, i.e., z, the roll angle ϕ, and the pitch
angle ψ, are calculated from the 2D pose estimate and from
the structure of the ground surface. Furthermore, the motion
does not consider the interactions between the errors acting
on the components, and introduce uncertainty on the single
components of the movement according to a velocity model.
It is to be observed that the independency between the single
components of the pose is also assumed in other works [6].

In [4] a representation called multi-level surface maps
is used. This technique is proposed as an extension of
the elevation maps used in [7] and introduced in [8]. It
allows modeling vertical structures within a grid map used
for localization with laser range finders. However, these
structures do not allow the representation of some typical
urban outdoor situations, like bridges or multilevel parkings.
Furthermore, in [4] the motion model, more sophisticated
then to the one in [5], bases on an evolution of the model
introduced in [9], and is similar to that illustrated in [2],
again a purely 2D-3DoF motion model.

The inadequacy of these simplifications in urban outdoor
situations has driven us to develop a different probabilistic
motion model, based on the modeling of a spatial generic
movement considering all the components of the 6DoF
state. The model, adaptable to different vehicle kinematics,
accommodates 6DoF movements even when sensing of some
component is missing, e.g., in case of a wheeled vehicle
without an IMU.

The next section introduces the proposed motion model,
then in section III we compare the our proposal and model
that we developed previously, in order to clarify the rele-
vance of an appropriate model. We then conclude presenting
experimental data.

II. PROPOSED MOTION MODEL

The model we propose bases on the 2D-3DoF formulation
presented in [2, Sect. 5.4]. In that work a displacement is
divided in a sequence of 3 steps: an onsite rotation δrot1,
a translation δtransl, and another onsite rotation δrot2, see
Figure 1. This decomposition allows the introduction of the
uncertainty on each step in the form of a normal error. These



Fig. 1. 2D-3DoF motion model from [2, Sect. 5.4].

Fig. 2. Uncertainty area of the 3D Model.

errors are zero-mean and are parameterized by a standard
deviation that is dimensioned according to the disturbances
acting on each step. The composition of the uncertainties of
the steps gives a realistic uncertainty affecting the pose, after
the application of the motion.

Similarly, the 6DoF motion model has to include motion
in all the 6 DoFs of the vehicle and, at the same time, it
should divide the whole displacement in a sequence of steps,
again zero-mean, so that a parameterized uncertainty on each
of the steps turns, after their composition, into a realistic
uncertainty on the final pose.

An extended odometer (dead reckoning) can include esti-
mates of displacements in all 6 DoFs, by integrating odom-
etry, i.e., displacements estimated from the rotation of the
wheels, with IMU data. In particular, ∆x, ∆y, and ∆ϑ
(yaw) can be output by a wheel odometer, while the ∆ϕ
(roll), ∆ψ (pitch), and ∆z, can be output by an IMU. Our
proposal includes a set of additional parameters, used when
the odometric readings lack some components; e.g., in the
case of an IMU-less vehicle.

The state vector has six components, to represent the pose
of a rigid body in a 3D world xt = |x, y, z, ϕ, ψ, ϑ|′. Let us
group the first 3 components in positiont and the last 3 in
orientationt, so that xt = |positiont, orientationt|′.

Our proposed decomposition of a displacement bases on
six steps, which can be grouped in 2 sets: 3 steps to define the
new position positiont

1, and 3 steps to define orientationt.
On each step some uncertainty will be added. We now review
the first 3 steps, with reference to Figure 2, which give
positiont.

1) Rotation δyaw1
, which represents a rotation around the

Z axis, is necessary to align orientationt−1 toward

1With the notation (abc) we refer to the prediction of the state abc,
obtained by the application of the motion model.

positiont in the XY plane; this step corresponds to
2D-3DoF rotation δrot1.

2) Rotation δpitch1
, which represents a rotation around the

Y axis, and is also necessary to align orientationt−1
toward positiont, but in the XZ plane; this step
introduces the possibility of a change in the value of
the elevation.

3) Translation δtransl, which represents a translation
along the X axis; this translation moves the reference
system, after the rotation by δyaw1 and δpitch1 , to
positiont; this step corresponds to 2D-3DoF transla-
tion δtransl.

The three parameters δyaw1 , δpitch1 , and δtransl can be seen
as the coordinates, in a spherical coordinate system, of the
origin of the new pose xt. To compute the motion parameters
from the extended odometer readings, equations 1 to 3 can
be used.

δyaw1
= arctan(

∆y

∆x
) (1)

δpitch1
= arctan(

∆z√
∆x2 +∆y2

) (2)

δtransl =
√
∆x2 +∆y2 +∆z2 (3)

For the computation of orientationt, our proposal is to
compose orientation(t−1) with a generic rotation, which
is in turn the composition of 3 last rotation steps. The
parameters of these steps, i.e., δroll, δpitch2 , δyaw2 , are sensed
directly by the extended odometer.

δroll = ∆ϕ; δpitch2
= ∆ψ; δyaw2

= ∆ϑ (4)

In order for the motion model to generate realistic motion
uncertainty, it is necessary to add randomness to the compo-
nents of the state vector xt, by acting on the parameters of the
motion model. This randomness will be normally distributed,
with zero mean. The standard deviation of the components
can be calculated according to the following considerations,
which are specific to each single step.

1) Rotation δyaw1
, as in [2], is influenced by:

• how much the vehicle has rotated, as measured by
the wheel odometer;

• how much space the vehicle has traveled, as mea-
sured by the wheel odometer.

For both factors, the larger the factor, i.e., the change
of orientation and/or the traveled distance, the larger
the potential mismatch between the odometric measure
and real pose.

2) Rotation δpitch1
, is influenced by:

• how much the z coordinate has changed, i.e., by
∆z, as measured by the extended odometer, from
the IMU.

3) Translation δtransl is influenced by:
• how much space the vehicle has traveled, as mea-

sured by the extended odometer; the longer the



Fig. 3. REAL and CALCULATED (basing on odometry) trajectories,
which impact on the uncertainty on δtransl, as due to a change in pitch
(∆ψ).

Fig. 4. REAL and CALCULATED (basing on odometry) trajectories,
which impact on the uncertainty on δtransl, as due to a change in roll
(∆ϕ).

traveled distance, the larger the potential mismatch
between the odometric measure and real pose;

• how much the vehicle has rotated about the Y
axis, i.e., the variations ∆ψ, as measured by
the extended odometer. A change of pitch while
performing a translation, represents a situation
where the motion is taking place over a non
planar surface. Therefore the traveled distance is
larger and the uncertainty is also larger. Figure 3
illustrates the translation resulting from integration
of odometry, and the real translation.

• how much the vehicle has rotated about the X
axis, i.e., the variation in roll ∆ϕ, as measured
by the extended odometer. Figure 4 illustrates the
translation resulting from integration of odometry,
and the real translation.

• how much the vehicle has rotated about the Z axis,
i.e., the variation ∆ϑ, as measured by the extended
odometer. Figure 5 illustrates the translation re-
sulting from integration of odometry, and the real
translation.

4) Rotation δroll is influenced by:
• how much the vehicle has rotated around its X

axis, i.e., variation ∆ϕ, as measured by the ex-
tended odometer, from the IMU.

5) Rotation δpitch2
is influenced by:

• how much the vehicle has rotated around the Y
axis, i.e., the variation ∆ψ, as measured by the
extended odometer, from the IMU.

6) Rotation δyaw2 is influenced by:
• how much the vehicle has rotated around the Z

axis, i.e., the variation ∆ϑ, as measured by the
extended odometer, from the wheel odometer.

Fig. 5. REAL and CALCULATED (basing on odometry) trajectories,
which impacts on the uncertainty on δtransl, as due to a change in yaw
(∆ϑ).

• how much space the vehicle has traveled: the
longer the traveled distance, the larger the potential
mismatch between the odometric measure and
reality, as measured by the wheel odometer.

Basing on the above mentioned influences, we can define the
standard deviations of the noise representing the uncertainty
affecting the 6 steps. Finally, in order to gain a better control
on the model behavior and similarly to what has been done
in [2], we introduce a weight α, for each step.

σyaw1
= α1 · δyaw1

+ α2 · δtransl (5)

σpitch1 = α3 ·∆z (6)

σtransl = α4 ·δtransl+α5 ·δyaw2
+α6 ·(δroll + δpitch2

) (7)

σroll = α7 · δroll (8)

σpitch2 = α8 · δpitch2 (9)

σyaw2
= α9 · δyaw2

+ α10 · δtransl (10)

The IMU uncertainty is assumed not correlated with the
wheel odometer uncertainty. Moreover, notice that σroll,
σpitch1 , and σpitch2 are influenced only by the IMU part
of the extended odometer, while σtransl is influenced both
by the wheel odometer and the IMU, see Figure 4, 3, and 5.

The sampling motion model will be the following:

δ̂yaw1 =δyaw1+

SAMPLE {α1 · δyaw1 + α2 · δtransl }︸ ︷︷ ︸
σyaw1

(11)

δ̂pitch1 = δpitch1 + SAMPLE {α3 ·∆z}︸ ︷︷ ︸
σpitch1

(12)

δ̂transl =δtransl+

SAMPLE

α4 · δtransl + α5 · δyaw2
+

α6 · (δroll + δpitch2
)︸ ︷︷ ︸

σtransl

 (13)

δ̂roll = δroll + SAMPLE (α7 · δroll)︸ ︷︷ ︸
σroll

(14)



δ̂pitch2 = δpitch2 + SAMPLE (α8 · δpitch2)︸ ︷︷ ︸
σpitch2

(15)

δ̂yaw2 =δyaw2+

SAMPLE (α9 · δyaw2 + α10 · δtransl)︸ ︷︷ ︸
σyaw2

(16)

In case an extended odometer is not available, the expected
value will of course be null, and we can use an a priori
standard deviation value for each parameter, determined on
the basis of the expectations on the change that the terrain
can induce in each degree of freedom. Of course this option
implies a larger uncertainty, which in turn requires a larger
computational effort.

A. Model thresholds

The model exploits a few parameters, i.e., thresholds, in
order to handle some situations.

1) Minimum thresholds: As it can be noticed in the
relationships above, and similarly to what is done in [2,
Sect 5.4], the standard deviations of the uncertainties are
proportional to the amount of motion involved into each step.
Whenever the motion is too small, the standard deviation gets
underestimated. These thresholds are used in such cases; they
guarantee a minimum dispersion of the sampled data, which
is necessary to correctly represent the real uncertainty.

2) Maximum thresholds: These thresholds have been in-
troduced in order to handle situations where the extended
odometer does not give out values in 6DoF, i.e., when there
is no IMU on the vehicle. Maximum thresholds represent the
maximum a priori uncertainty; on the other hand we expect
a better, i.e., more concentrated estimate of robot movements
when using a sensor. The σmax value that is associated to
every model parameter needs to be suitably large so to ensure
that samples can be generated with enough dispersion about
the mean value, in order to represent all possible changes on
the given degree of freedom. We have chosen the values of
these thresholds considering a maximum vehicle speed of 25
Km/h and a 20Hz sampling frequency for the odometer.

III. COMPARISON WITH ANOTHER MOTION MODEL

In order to clarify the relevance of a careful design of
the motion model, we present here also a different model
that we developed before the one proposed in this paper. We
came first to this model because it was, in our eyes, closely
resembling the 2D-3DoF model presented in [2, Sect 5.4].
This model is based on dividing the displacement into 3
steps, see Figure 6.

1) Rotation δrot1 , a rotation about an axis N1. To
obtain N1, let us call D the vector (positiont −
position(t−1)). N1 is the vector product of the X axis
of frame pose(t−1) and D.

N1 = (positiont − position(t−1))×Xpose(t−1)
(17)

Fig. 6. The first (naive) motion model that was developed.

2) Translation δtransl, a translation along the X axis of
the frame obtained at the previous step, i.e., after the
rotation of poset−1 by δrot1 . At the end the origin will
reach positiont.

3) Rotation δrot2 , a rotation about an axis N2. N2 is the
vector product of the X axis of frame poset and D.

N2 = (positiont − position(t−1))×Xposet (18)

This rotation aligns the reference frame, which has
been obtained rotating pose(t−1) by δrot1 and then
translating by δtransl, to orientationt.

The uncertainty on the components of the motion model
is sampled from normal distributions, for each of the 3
parameters δrot1 , δtransl, and δrot2 . Such distributions have
zero-mean and standard deviations computed similarly to
what has been done for the motion model in [2, Sect 5.4].
It is just a similarity because of the need to introduce other
degrees of freedom to the uncertainty affecting positiont,
which would be just 2 (δrot1 , and δtransl), for a 3D point.
We therefore add noise to the vector N1 as, if we added noise
to the vector D, we would obtain the model proposed above.
Notice that the 2 parameters of N1 are not independent w.r.t.
the uncertainty of rotating about N1, so the DoF count for
positiont is correct.

This naive model, which turned out not being well per-
forming, demonstrates how heavily the decomposition of
the overall displacement, i.e., the motion model, affects the
capability to produce realistic poses. Actually, the poses
generated by this model are not realistically distributed about
the real pose, see Figure 7 and Figure 8, where it can be
observed that the uncertainty is rotated along the X axis;
the larger ∆z, the more rotated the particle cloud. Figure 9
shows the corresponding uncertainty for the motion model
proposed above.

IV. EXPERIMENTAL RESULTS

We first tested the software implementation of the pro-
posed motion model in simulation; because of space limits
we report hereafter only some real tests performed on our
research vehicle. Testing have been performed is the parking
area of the U5 building of Università di Milano - Bicocca,
see Figures 10, 12, 13.



Fig. 7. Uncertainty area for the naive motion model.

Fig. 8. 3D view of the particle set for the naive motion model. Notice
that the larger the overall ∆yaw and ∆z, the larger the distortion of the
particle set.

Fig. 9. 3D view of the particle set for the proposed motion model. Notice
the absence of the distortion that is affecting the particle set presented in
Figure 8

The motion model have been plugged into a state of the art
Monte Carlo Localization software [10]. We performed the
tests in this order: first we verified that the localization was
correct when moving on an almost planar surface, i.e., the
model was performing at least as the state of the art 2D-3DoF
model. This has been done in the underground garage of the
building, where the floor appears to be reasonably planar.
We did obtain results comparable to the ones obtained with
the 2D-3DoF state of the art software [10]. Secondly, we
drove along a path including a ramp, from the garage to the
outdoor parking area, see Figure 11. Also in these last tests
the localization was successful, one experiment is depicted
in Figure 14. As we have no ground truth for the pose, we
checked that at the end of the path, at about pose n. 8 in
Figure 10, the estimated pose was matching the real one,
and we always obtained this result.

On the other hand, the naive motion model fails in high
curvature curves, as it might be expected from observing, in
Figure 7, the unrealistic uncertainty implied by this model;
an example of failure is presented in Figure 15.

Despite roll and pitch data were available, thanks to
an MTi X-sens IMU sensor, we verified that using only
the available LIDAR sensors, altogether with appropriate

Fig. 10. Voxel representation of the U5 building underground garage. Here
it is shown the part that includes the ramp leading to the outdoor parking:
pose n. 8 is at the gate of the underground garage, pose n. 4 is in the outdoor
parking nearby where the cart is depicted in Figure 13, poses n. 3 and 5
are on the ramp, poses n. 1, 2, 6, 7 are in the road leading to the ramp.

minimum and maximum thresholds, sufficed for a correct
localization. We also noticed that using together both types
of LIDAR models we had available (Sick LMS111 and
LDMRS4001) is extremely useful, since they measure on
different scanning planes.

CONCLUSIONS

We presented a motion model for 3D-6DoF localization,
and showed that a careful design is required to obtain a
realistic representation of the involved uncertainties. The
presented model demonstrated its suitability in different
experiments and is currently in use for our research in urban
autonomous driving.
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Fig. 11. Snapshots along the path shown in Figure 10: from the
underground garage, through the ramp, to the outdoor parking lot and back
into the garage; 1) top to 8) bottom. Notice in 1), 3), 7) and 8) the cart
reference frame, shown in the same map used by the software. Notice in 3)
the frame pitching up along the ramp.

Fig. 12. U5 building - Aerial view, the ramp from the underground garage
can be noticed on the left of the largest tree.

Fig. 13. The ramp from the underground garage to the outdoor park,
picture taken from the outdoor park.

Fig. 14. The green path represents the odometric path; the red path
represents the localization obtained using the proposed motion model.
Notice at 1) i.e., nearby pose n. 8, the correctness of the localization.

Fig. 15. A typical experiment with the naive motion model. In the path, just
before 2), the localization system failed (whether this error is tolerable is not
analyzed here), but in 2) it could luckily recover; in 1) it fails completely,
without recovery.


