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Abstract

In this paper we propose an improvement to the Implicit Shape
Model (ISM) based robust object detection system proposed by
Leibe et al. Object detection with ISM allows to approach the
classification and tracking in a probabilistic way with multiple
hypotheses. Unlike the original approach, our method is inde-
pendent from object scale in the training sets, and this allows to
work with a much smaller training sets and also to avoid to sup-
ply information about scale to the trainer. This is done while
maintaining the robustness of the original approach. Leibe et
al. mentioned a potential solution to overcome the scale prob-
lem in the training set, i.e., the usage of the scale produced by
the local descriptor. Our proposal is different: since we believe
that the scale measure generated by local descriptors is subject
to noise, we try to walk around this noise by estimating the
scale measure from the only evidence collected in the image.

1 Introduction

In the last years object detection and tracking could afford deal-
ing with realistic, i.e., challenging, conditions thanks to the ad-
vancements in computer vision research. The object-detection
task consists of the process of determining the class of specific
objects in an image. Humans can perform this task easily, even
if the objects appear rotated, scaled or partially occluded. To
reach a human level ability is still an unsolved issue for state-
of-the-art computer vision systems.

Usually, object detection algorithms cannot grant that the
resulting interpretation of the image is the correct one. There-
fore it is advisable to accumulate evidence over time, which
implies coupled classification and tracking. We believe to be
preferable to generate different interpretation hypotheses and
then to choose those that better explain the actual observations
of the world. In our thinking the different interpretation hy-
potheses should be characterized and compared in a probabilis-
tic framework. The idea of probabilistic multiple hypotheses
classification and tracking dates back to the early 90’ and has
been further developed over the years. The approach that best
matches our objectives is the one in [5] [9].

In this paper we focus on object detection subsystem, im-
proving the approach presented by Leibe et al. in [7].

In the next section we shortly review the state-of-the-art in

object detection. In Sec. 3 we present the original formaliza-
tion of the Implicit Shape Model. In Sec. 4 we focus on the
codebook creation, and in Sec. 5 we review the original ob-
ject detection system. In Sec. 6 we present our proposal for
scale-independence, and in Sec. 7 we present some results of
our system.

2 Related work

An ideal object detection system should be able to detect its tar-
gets in the observed scene independently on their orientation,
position, scale, and also with some degree of occlusion.

An important challenge is to gain the capability of gener-
alization, i.e., detecting the objects of a certain class and not
only one instance, despite the differences in the object shape
from one instance to the other in the class. An important con-
tribution towards this objective has been the one by D. Lowe
about scale-invariant descriptors [10]. The so-called SIFT de-
scriptors, state-of-the-art today, provide descriptors of image
patches that are invariant not only with respect to orientation
and position, but also to scale and partial occlusion. Basing on
such descriptors robust detectors can be developed.

For each image object one can detect many interesting fea-
tures, for gathering a discriminating description of the object.
By means of the descriptions accumulated during the process-
ing of the images in an appropriate training set, one can then
process new images in order to detect new instances of the ob-
ject in new images.

In shape-based object recognition, see e.g., [12], the us-
age of statistics on the spatial frequencies of the descriptors is
proposed. This is a quite effective approach whenever the ob-
jects to be detected have more or less constant shapes, and with
regular textures; these approaches deal well with position, ori-
entation, scale and occlusion. Such approaches do not perform
well, on the other hand, on objects, e.g., people, that can appear
in a wide set of different shapes and postures.

In 2003 Leibe and Schiele in [8] proposed a method that
does not require an exact a priori knowledge about the objects
to be detected, but only some instances. Therefore the training
can take place on different instances of the objects with respect
to the ones that the system could observe when running. This
feature makes the system more complex, as the system cannot
base on the specific objects, but has to consider large intra-class
variations. In [6] the same authors, with Leonardis, formalized
their approach in the so-called IMS (Implicit Shape Model),



and later [4], with Mikolajczyk, they extended it to include dif-
ferent descriptors on common probabilistic grounds.

In the view of integrating the output of an object detector
in a classifier and tracking system, we need to express the de-
tector output in the form of a probability distribution. Liebe
and Schiele approach has the relevant peculiarity that the de-
tection output is a set of hypotheses on the size, pose, and class
of one or more objects. Their approach can also be easily mod-
ified to accommodate a pixel level segmentation. This means
that the detector will be able to output, for each object, a pixel
map where, for each pixel, the probability of that pixel being
part of the object (or being part of the background) is avail-
able. The usage of such method in a probabilistic framework
for classification and tracking allows to generate 3D hypothe-
ses (by means of camera-to-world projection) and to select the
best interpretation of the image, provided some constraints are
satisfied like, e.g., a pixel not being associated to two objects,
etc. This in turn allows the classifier and tracking system to
handle realistic partial object occlusions.

3 The Implicit Shape Model formalization

The approach proposed in [8], developed in [6] and extended
in [4] rely on an implicit description of the objects. Thanks
to this characteristic we don’t need an explicit description any
more which, as seen in the previous section, requires large
training sets and complicated description models. This ap-
proach, on the other hand, builds its knowledge base, called
codebook, by collecting description and spatial evidence from
the training images.

This is performed by computing some local descriptors
(e.g. SIFT, Shape Context) on interest regions automatically
extracted from the images. This information, in conjunction
with the spatial coordinates of the interest regions, is stored in
the codebook and used later at detection time. Thus we col-
lect information about the object in areas which provide more
details in object description.

Formally, as stated in [6], an Implicit Shape Model
ISM(C) = (I¢, Prc) for a given object category C' con-
sist of a knowledge base I (codebook), built-up with local de-
scriptors discriminative for the object class, and of a spatial dis-
tribution P; ¢ that indicates where each codebook entry may
be found on the training object. There are two requirements
for the spatial distribution P; ¢. First, such distribution should
be defined independently for each codebook entry, thus making
the approach flexible and capable to merge, at detection time,
parts of objects observed on different training images. Second,
this distribution should be computed in a non-parametric way,
thus emulating the real distribution as in detail as the training
objects permit, or, in other words, exploiting as much training
informations as possible. Furthermore this requirements frees
us from making Gaussian assumption on the spatial distribu-
tion.

CODEBOOK

| ENTRY 1 | | ENTRY 2 |

| ENTRY 3 | | ENTRY ... |

e |
i

Ay/H

Ax, Ax, .. Ax,
Ay, Ay, ., Ay,

(A)

/

(C)

Figure 1. Structure of the codebook and its entries. (A) repre-
sents the segmentation mask, (B) contains the parameters of the
ellipsis which includes the image patch, (C) the values of the
associated local descriptor calculated on the image patch, (D)
the informations about the relative patch position with respect
to object center, (E) lists all possible image centers for which
this patch may cast votes.

4 Codebook creation

In the approach presented in [4] the codebook is filled with N
entries, each one representing some evidence extracted from
the training images. For each descriptor (named cue in the pa-
per) we build a separate codebook. Each entry of such code-
book should contain informations about its own relative posi-
tion with respect to object center, the values of the associated
local descriptor calculated on the image patch which generated
that entry, a segmentation mask figure/background, the param-
eters of the ellipsis which includes the image patch, the object
scale and the list of possible object centers for which this entry
may cast votes. Since our proposed approach works indepen-
dently of the object scale, this information can be omitted. In
Fig. 1 the structure of the codebook and its entries are shown.

The procedure of codebook creation is divided in two parts.
First we analyze the training images and populate the codebook
with entries containing information about interest regions in the
image. Second we compare, calculating the euclidean distance
in the space of descriptor values, all codebook entries with each
other. Each couple that results sufficiently similar enrich the
spatial information of each entry with the other’s one. This
make it possible for a codebook entry to vote, at detection time,
for more than one object center.

The first phase, i.e., the analysis of the training image, is
performed in the following steps:

e We extract the most interesting image areas using one
or more automatic interest region detectors. These al-
gorithms ground on functions such as Harris function,
Hessian determinant, etc. in order to extract scale in-
variant regions of interest from an image. An interest
region is an image portion with high descriptive content



(high edgeness, cornerness, etc.) which can be used for
discriminative purposes in conjunction with some local
descriptors.

e We calculate the values of local descriptors on interest
regions. Each descriptor is composed by a different num-
ber of values, thus the codebook structure need to be suf-
ficiently flexible in order to contain different descriptors.
Local descriptors extract some kind of “fingerprint” of
an image region, which are typically scale and rotation
invariant. Some example of local descriptors are SIFT,
PCA-SIFT, Shape Context, etc [11]. In our implementa-
tion we tested both SIFT and Shape Context descriptors.

e Finally we save in the codebook, for each interest region,
the parameters of the ellipse, the spatial information, the
values of the local descriptor and the local segmentation
mask (extracted from the global segmentation mask sup-
plied in the training set.

Before approaching the second part of the codebook cre-
ation procedure we filter out some codebook entries. This
choice brings to two improvements: first it speeds up the de-
tection algorithm and, second, it increments the quality of the
codebook by reducing noise generated by the region finder al-
gorithms.

In the second part of the codebook creation we compare
all codebook entries with each other. The aim of this pro-
cedure is to enforce the generation of object hypotheses and
their segmentation during detection and to enable single image
patches to vote for more than one object center. The simil-
itude measurement is calculated as euclidean distance in the
M-dimensional space of descriptor values:

6]

If the distance between two entries is under an acceptance
threshold, we say that their domain of discrimination is similar,
thus we enable both entries to cast votes, at detection time, for
their own center and for the center of the other entry.

This step concludes the codebook creation procedure.

5 Object detection
5.1 Image analysis

The image analysis procedure is similar to the one described
in the codebook creation section. Applying several region de-
tection algorithms on the image we are able to extract some
interesting areas (in the following they will be called patches).
For each patch we compute different values obtained by exe-
cuting different region descriptors. These values will be stored
for the following operations.

Next, the set of extracted image patches will be compared
with all the codebook entries. For each pair patch-entry an Eu-
clidean distance in the space of descriptor values is computed.
If the distance is less than an a-priori threshold (the same used

in the codebook creation procedure) then the patch will be as-
sociated to the codebook entry.

5.2 The original approach for voting

The original approach proposed by Leibe et al. in [4] bases
on the equation that describes the probability that an object is
located in a particular position with a specific scale, given the
evidence, the position of the patch, and its descriptor.

Plon, Ne 1) = plo,, ACY1Lq)p(Clle) ()

The purpose of this section is to define a practical meaning
for the components of this equation.

e The probability p(o,, A\|C{, 1, q) represents the strength
with which the patch votes for the object center (\). It
is inversely proportional to the number of possible inter-
pretations of the patch. This formulation comes from the
intuitive idea that the more interpretations a patch has,
the more its vote will be unreliable. For example, if a
patch representing a car wheel matches in the codebook
with both car wheel entries and hood entries, then it will
be not discriminative to univocally identify the car cen-
ter. For this reason the center will have a low probability

p(On7 >\|qu7 l;Q)'

e p(Cfle) represents the probability for the patch being
correctly explained by a codebook entry C'. The intu-
itive meaning is the following. Given a pair patch-entry,
the perfect explanation of the patch generates a vote for
the exact center of the object. Since an entry generally
votes for more than one center, the probability of obtain-
ing the correct explanation of the patch decreases when
this number increases. Therefore, we can represent the
probability p(C}|e) as the inverse of the number of cen-
ters voted by the C entry.

Finally, the p(o,,\|C%,1,q)p(C{|e) term represents the
strength of the vote of each patch.

6 Our proposal

In the approach described above each image patch can cast
votes for some object centers as point coordinates. This im-
plies that a single vote represents a possible object center at
that location and at that scale, thus requiring the scale infor-
mation generated by local descriptors. Since this information
is often subject to noise, we try to walk around it by estimating
the object scale only from the spatial distribution of the image
patches detected. Furthermore, we want the voting procedure
to be independent from the object scale. Such a result would al-
low to operate with a much smaller training sets, since the many
images of the same objects at different scales would not be nec-
essary any more. Smaller training sets and, thus, smaller code-
books, noticeably reduce computational costs when comparing



Figure 2. In this figure we show the difference between the
original (upper-left) and our (upper-center) approach. Note that
in the former each image patch casts a vote for the object cen-
ter; in the latter each patch casts a votes for a line on which
the object center may be found. The result of our method is
a voting space like the one shown in the upper-right image.
The lower two images show the voting space with all image
patches votes (left) and the same space after some image pro-
cessing (mainly Gaussian blurring) for the enhancement of the
local maxima extraction (right).

image patches to codebook entries, since each patch needs to
be compared with all entries.

In our approach each patch will no longer vote for a point
as the center of the object. Instead, a half straight line will be
drawn in the voting space, starting from patch center and going
towards the hypothesized object center. Since the region de-
scriptors are scale-invariant, the same object detail should gen-
erate similar descriptor values even if scaled or rotated. Thus
we save, at training time, the information about the direction of
the object center with respect to the patch position in the train-
ing image. This information is used at detection time to specify
the relative position of the trained object center with respect to
the matched patch. In Fig. 2 we show the difference between
the original method and ours. The strength of each vote, as de-
scribed above, is given by the product p(o,,, A\|C{, 1, q)p(Cl|e).
As suggested in [4], the procedure for extracting local maxima
is performed by the mean shift mode estimator technique.

7 Results

In order to show that our system is capable to detect objects at
different scales, regardless of object scale in the training sets,
we trained a codebook with only one training image and run the
detection system both on the original image, and a set of scaled
copies of the same. In Fig. 3 we can see one example of this ex-
periment, where a scaled copy of the original training object is
detected without any loss of precision. Please note how differ-
ent are the interest regions, extracted by the automatic interest
region finders, in the two images.

Figure 3. In this figure we show an example of the indepen-
dency of our approach from the scale of the training objects.
Please note that the interest regions, extracted by the interest
region finders, are quite different in the two images.

Figure 4. The images used as training set.

We need also to demonstrate that our system is capable to
detect objects in cluttered scenes and under difficult lighting,
comparably to the original proposal. Out of the many experi-
ments performed, we present here the ones concerning detec-
tion of persons. The codebook for these experiments was gen-
erated from the 5 images presented in Fig. 4. The results are
from images from other datasets. Fig. 5 presents some results
for images from the RAWSEEDS datasets, which have been
collected by a mobile robot in both indoor and outdoor condi-
tions; they are freely available on the web, see [1]. The 5 train-
ing images were also taken from RAWSEEDS project ones,
though different from the ones used for the evaluation. The
results in Fig. 6 are from datasets from the VISOR repository,
also freely available on the web, see [2]. The same codebook,
trained on the images in Fig. 4, was used for the images from
VISOR.

Note that the number of images in the training set is much
smaller than the cardinality of the training sets used by Leibe
et al., which were typically including more than 200 images,
see e.g., [9], [3]. Furthermore, the training sets only consist
of training images and their segmentation masks, without any



Figure 5. Some results achieved by the detection system on
images from the RAWSEEDS project.

Figure 6. Some results achieved by the detection system on
images from the VISOR datasets.

information about object scale.

We collected statistics about one VISOR dataset (vi-
sor_1196179837385_moviel 1 _viper.mpg). This dataset in-
cludes 1901 images; we processed one image every 20, for
a total of 95; some of these images did not include any per-
son. In total we had 80 images including at least one person.
The processed images were then checked by human inspection
(ourselves) in order to collect the number of false positives and
negatives. The results on a total number of 98 person observed
in the 80 processed images are: 60 correct detections of the
person; 14 “pure” false positives, i.e., the detection of a non-
existant person when another person, correctly detected, was
in the image; 20 “pure” false negatives, i.e., missed detection;
18 false positives with a false negative beside, i.e., an error in
the localization of the person. Concerning this aspect, it has to
be mentioned that the camera projection parameters were not
available, we therefore used the parameters of the camera used
in the RAWSEEDS dataset, which introduces gross mistakes.
The outcome, in terms of accuracy of localization, can be seen,
e.g., in Fig. 8. Therefore, we conclude that these 18 errors are
more the consequence of the inaccuracy of the camera calibra-
tion than of the inaccuracy of the detector. Concluding, we can
consider that we had (60+18) / 98 correct detections = 78/98 =
80%. In Fig. 7 we show some real mistake of the system.

Figure 7. Some mistakes of the detection system: (left) a cor-
rect detection with a false positive on its right; (right) a correct
detection with a false negative on its right, notice that the cor-
rect detection is a seating person, i.e., a situation missing in the
training set.

Figure 8. An example of the localization error for the VISOR
dataset, turning into both a false negative and a false positive in
the same image.

8 Conclusions

In this paper we proposed a substantial improvement to the
ISM-based detection system proposed by Leibe et al., e.g.,
in [4]. Unlike the original approach, our method is indepen-
dent from the object scale in the training sets. This allows to
work with much smaller training sets and to avoid to supply
information about scale and size to the trainer. This has been
done maintaining the robustness of the original approach. We
also showed preliminary results on challenging datasets, chal-
lenging with respect to the size of the training set. We are cur-
rently working on creating a large statistic from the output of
our system that will be used for comparison with other detec-
tion systems in a more structured way (ROCs, efficiency, etc.).
The qualitative evaluation performed so far, which in our opin-
ion has been very satisfactory, showed that the percentage of
correct detections for the tested category of objects (pedestri-
ans) is very high. False positives are quite rare. False negatives
are primarily present in low contrast scenes, where interest re-
gion finders achieve their worst performance. The size of the
training sets (and, thus, of codebooks) are notably smaller than
the ones required by the original approach.
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